NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bibif GIF version

Theorem bibif 335
Description: Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)
Assertion
Ref Expression
bibif ψ → ((φψ) ↔ ¬ φ))

Proof of Theorem bibif
StepHypRef Expression
1 nbn2 334 . 2 ψ → (¬ φ ↔ (ψφ)))
2 bicom 191 . 2 ((ψφ) ↔ (φψ))
31, 2syl6rbb 253 1 ψ → ((φψ) ↔ ¬ φ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  nbn  336
  Copyright terms: Public domain W3C validator