| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > bicom | GIF version | ||
| Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bicom | ⊢ ((φ ↔ ψ) ↔ (ψ ↔ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 190 | . 2 ⊢ ((φ ↔ ψ) → (ψ ↔ φ)) | |
| 2 | bicom1 190 | . 2 ⊢ ((ψ ↔ φ) → (φ ↔ ψ)) | |
| 3 | 1, 2 | impbii 180 | 1 ⊢ ((φ ↔ ψ) ↔ (ψ ↔ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: bicomd 192 bibi1i 305 bibi1d 310 con2bi 318 ibibr 332 bibif 335 nbbn 347 pm5.17 858 biluk 899 bigolden 901 xorcom 1307 falbitru 1352 3impexpbicom 1367 mtp-xorOLD 1537 exists1 2293 eqcom 2355 eqabcb 2460 ssequn1 3434 isocnv 5492 |
| Copyright terms: Public domain | W3C validator |