NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nbn2 GIF version

Theorem nbn2 334
Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)
Assertion
Ref Expression
nbn2 φ → (¬ ψ ↔ (φψ)))

Proof of Theorem nbn2
StepHypRef Expression
1 pm5.501 330 . 2 φ → (¬ ψ ↔ (¬ φ ↔ ¬ ψ)))
2 notbi 286 . 2 ((φψ) ↔ (¬ φ ↔ ¬ ψ))
31, 2syl6bbr 254 1 φ → (¬ ψ ↔ (φψ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  bibif  335  pm5.21im  338  pm5.18  345  biass  348
  Copyright terms: Public domain W3C validator