New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nbn2 | GIF version |
Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 28-Jan-2013.) |
Ref | Expression |
---|---|
nbn2 | ⊢ (¬ φ → (¬ ψ ↔ (φ ↔ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 330 | . 2 ⊢ (¬ φ → (¬ ψ ↔ (¬ φ ↔ ¬ ψ))) | |
2 | notbi 286 | . 2 ⊢ ((φ ↔ ψ) ↔ (¬ φ ↔ ¬ ψ)) | |
3 | 1, 2 | syl6bbr 254 | 1 ⊢ (¬ φ → (¬ ψ ↔ (φ ↔ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bibif 335 pm5.21im 338 pm5.18 345 biass 348 |
Copyright terms: Public domain | W3C validator |