NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl6rbb GIF version

Theorem syl6rbb 253
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl6rbb.1 (φ → (ψχ))
syl6rbb.2 (χθ)
Assertion
Ref Expression
syl6rbb (φ → (θψ))

Proof of Theorem syl6rbb
StepHypRef Expression
1 syl6rbb.1 . . 3 (φ → (ψχ))
2 syl6rbb.2 . . 3 (χθ)
31, 2syl6bb 252 . 2 (φ → (ψθ))
43bicomd 192 1 (φ → (θψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  syl6rbbr  255  bibif  335  pm5.61  693  oranabs  829  necon4bid  2583  resopab2  5002  funconstss  5407  scancan  6332
  Copyright terms: Public domain W3C validator