| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > bicom1 | GIF version | ||
| Description: Commutative law for equivalence. (Contributed by Wolf Lammen, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| bicom1 | ⊢ ((φ ↔ ψ) → (ψ ↔ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2 189 | . 2 ⊢ ((φ ↔ ψ) → (ψ → φ)) | |
| 2 | bi1 178 | . 2 ⊢ ((φ ↔ ψ) → (φ → ψ)) | |
| 3 | 1, 2 | impbid 183 | 1 ⊢ ((φ ↔ ψ) → (ψ ↔ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: bicom 191 bicomi 193 |
| Copyright terms: Public domain | W3C validator |