New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bicomi | GIF version |
Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bicomi.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
bicomi | ⊢ (ψ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomi.1 | . 2 ⊢ (φ ↔ ψ) | |
2 | bicom1 190 | . 2 ⊢ ((φ ↔ ψ) → (ψ ↔ φ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (ψ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: biimpri 197 bitr2i 241 bitr3i 242 bitr4i 243 syl5bbr 250 syl5rbbr 251 syl6bbr 254 syl6rbbr 255 mtbir 290 sylnibr 296 sylnbir 298 xchnxbir 300 xchbinxr 302 con1bii 321 con2bii 322 nbn 336 xor3 346 pm5.41 353 pm4.64 361 pm4.63 410 pm4.61 415 anor 475 pm4.53 478 pm4.55 480 pm4.56 481 pm4.57 483 pm4.25 501 pm4.87 567 anidm 625 pm4.77 762 anabs1 783 anabs7 785 pm4.76 836 pm5.63 890 3ianor 949 3oran 951 pm3.2an3 1131 syl3anbr 1226 3an6 1262 nannot 1293 truimfal 1345 nottru 1348 nic-dfim 1434 nic-dfneg 1435 2nalexn 1573 sbid 1922 dvelimf 1997 cleljust 2014 cleljustALT 2015 sb10f 2122 nne 2521 necon3bbii 2548 necon2abii 2572 necon2bbii 2573 alexeq 2969 ceqsrexbv 2974 clel2 2976 clel4 2979 2reu5lem1 3042 2reu5lem2 3043 2reu5lem3 3044 dfsbcq2 3050 cbvreucsf 3201 nss 3330 difab 3524 un0 3576 in0 3577 ss0b 3581 ssunsn2 3866 iindif2 4036 nnsucelrlem1 4425 dfop2 4576 brex 4690 dmuni 4915 brelrn 4961 elimasn 5020 funun 5147 rnoprab 5577 mptpreima 5683 rnmpt2 5718 dmtxp 5803 nncdiv3lem2 6277 nchoicelem11 6300 epelcres 6329 |
Copyright terms: Public domain | W3C validator |