New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bicomi | GIF version |
Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bicomi.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
bicomi | ⊢ (ψ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomi.1 | . 2 ⊢ (φ ↔ ψ) | |
2 | bicom1 190 | . 2 ⊢ ((φ ↔ ψ) → (ψ ↔ φ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (ψ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: biimpri 197 bitr2i 241 bitr3i 242 bitr4i 243 syl5bbr 250 syl5rbbr 251 syl6bbr 254 syl6rbbr 255 mtbir 290 sylnibr 296 sylnbir 298 xchnxbir 300 xchbinxr 302 con1bii 321 con2bii 322 nbn 336 xor3 346 pm5.41 353 pm4.64 361 pm4.63 410 pm4.61 415 anor 475 pm4.53 478 pm4.55 480 pm4.56 481 pm4.57 483 pm4.25 501 pm4.87 567 anidm 625 pm4.77 762 anabs1 783 anabs7 785 pm4.76 836 pm5.63 890 3ianor 949 3oran 951 pm3.2an3 1131 syl3anbr 1226 3an6 1262 nannot 1293 truimfal 1345 nottru 1348 nic-dfim 1434 nic-dfneg 1435 2nalexn 1573 sbid 1922 dvelimf 1997 cleljust 2014 cleljustALT 2015 sb10f 2122 nne 2520 necon3bbii 2547 necon2abii 2571 necon2bbii 2572 alexeq 2968 ceqsrexbv 2973 clel2 2975 clel4 2978 2reu5lem1 3041 2reu5lem2 3042 2reu5lem3 3043 dfsbcq2 3049 cbvreucsf 3200 nss 3329 difab 3523 un0 3575 in0 3576 ss0b 3580 ssunsn2 3865 iindif2 4035 nnsucelrlem1 4424 dfop2 4575 brex 4689 dmuni 4914 brelrn 4960 elimasn 5019 funun 5146 rnoprab 5576 mptpreima 5682 rnmpt2 5717 dmtxp 5802 nncdiv3lem2 6276 nchoicelem11 6299 epelcres 6328 |
Copyright terms: Public domain | W3C validator |