| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cad11 | GIF version | ||
| Description: If two parameters are true, the adder carry is true. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| cad11 | ⊢ ((φ ∧ ψ) → cadd(φ, ψ, χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 374 | . 2 ⊢ ((φ ∧ ψ) → ((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ)))) | |
| 2 | df-cad 1381 | . 2 ⊢ (cadd(φ, ψ, χ) ↔ ((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ)))) | |
| 3 | 1, 2 | sylibr 203 | 1 ⊢ ((φ ∧ ψ) → cadd(φ, ψ, χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 357 ∧ wa 358 ⊻ wxo 1304 caddwcad 1379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-cad 1381 |
| This theorem is referenced by: cadtru 1401 |
| Copyright terms: Public domain | W3C validator |