NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cadtru GIF version

Theorem cadtru 1401
Description: Rotation law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cadtru cadd( ⊤ , ⊤ , φ)

Proof of Theorem cadtru
StepHypRef Expression
1 tru 1321 . 2
2 cad11 1399 . 2 (( ⊤ ⊤ ) → cadd( ⊤ , ⊤ , φ))
31, 1, 2mp2an 653 1 cadd( ⊤ , ⊤ , φ)
Colors of variables: wff setvar class
Syntax hints:  wtru 1316  caddwcad 1379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-cad 1381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator