New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cadtru | GIF version |
Description: Rotation law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
cadtru | ⊢ cadd( ⊤ , ⊤ , φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1321 | . 2 ⊢ ⊤ | |
2 | cad11 1399 | . 2 ⊢ (( ⊤ ∧ ⊤ ) → cadd( ⊤ , ⊤ , φ)) | |
3 | 1, 1, 2 | mp2an 653 | 1 ⊢ cadd( ⊤ , ⊤ , φ) |
Colors of variables: wff setvar class |
Syntax hints: ⊤ wtru 1316 caddwcad 1379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-cad 1381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |