| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > df-cad | GIF version | ||
| Description: Define the half adder carry, which is true when at least two arguments are true. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| df-cad | ⊢ (cadd(φ, ψ, χ) ↔ ((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff φ | |
| 2 | wps | . . 3 wff ψ | |
| 3 | wch | . . 3 wff χ | |
| 4 | 1, 2, 3 | wcad 1379 | . 2 wff cadd(φ, ψ, χ) |
| 5 | 1, 2 | wa 358 | . . 3 wff (φ ∧ ψ) |
| 6 | 1, 2 | wxo 1304 | . . . 4 wff (φ ⊻ ψ) |
| 7 | 3, 6 | wa 358 | . . 3 wff (χ ∧ (φ ⊻ ψ)) |
| 8 | 5, 7 | wo 357 | . 2 wff ((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ))) |
| 9 | 4, 8 | wb 176 | 1 wff (cadd(φ, ψ, χ) ↔ ((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cadbi123d 1383 cador 1391 cadcoma 1395 cad1 1398 cad11 1399 cad0 1400 |
| Copyright terms: Public domain | W3C validator |