NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cad0 GIF version

Theorem cad0 1400
Description: If one parameter is false, the adder carry is true exactly when both of the other two parameters are true. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
cad0 χ → (cadd(φ, ψ, χ) ↔ (φ ψ)))

Proof of Theorem cad0
StepHypRef Expression
1 df-cad 1381 . 2 (cadd(φ, ψ, χ) ↔ ((φ ψ) (χ (φψ))))
2 idd 21 . . . 4 χ → ((φ ψ) → (φ ψ)))
3 pm2.21 100 . . . . 5 χ → (χ → (φ ψ)))
43adantrd 454 . . . 4 χ → ((χ (φψ)) → (φ ψ)))
52, 4jaod 369 . . 3 χ → (((φ ψ) (χ (φψ))) → (φ ψ)))
6 orc 374 . . 3 ((φ ψ) → ((φ ψ) (χ (φψ))))
75, 6impbid1 194 . 2 χ → (((φ ψ) (χ (φψ))) ↔ (φ ψ)))
81, 7syl5bb 248 1 χ → (cadd(φ, ψ, χ) ↔ (φ ψ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358  wxo 1304  caddwcad 1379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-cad 1381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator