New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cad0 | GIF version |
Description: If one parameter is false, the adder carry is true exactly when both of the other two parameters are true. (Contributed by Mario Carneiro, 8-Sep-2016.) |
Ref | Expression |
---|---|
cad0 | ⊢ (¬ χ → (cadd(φ, ψ, χ) ↔ (φ ∧ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cad 1381 | . 2 ⊢ (cadd(φ, ψ, χ) ↔ ((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ)))) | |
2 | idd 21 | . . . 4 ⊢ (¬ χ → ((φ ∧ ψ) → (φ ∧ ψ))) | |
3 | pm2.21 100 | . . . . 5 ⊢ (¬ χ → (χ → (φ ∧ ψ))) | |
4 | 3 | adantrd 454 | . . . 4 ⊢ (¬ χ → ((χ ∧ (φ ⊻ ψ)) → (φ ∧ ψ))) |
5 | 2, 4 | jaod 369 | . . 3 ⊢ (¬ χ → (((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ))) → (φ ∧ ψ))) |
6 | orc 374 | . . 3 ⊢ ((φ ∧ ψ) → ((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ)))) | |
7 | 5, 6 | impbid1 194 | . 2 ⊢ (¬ χ → (((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ))) ↔ (φ ∧ ψ))) |
8 | 1, 7 | syl5bb 248 | 1 ⊢ (¬ χ → (cadd(φ, ψ, χ) ↔ (φ ∧ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 ⊻ wxo 1304 caddwcad 1379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-cad 1381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |