Step | Hyp | Ref
| Expression |
1 | | df-ce 6107 |
. . 3
⊢
↑c = (n ∈ NC , m ∈ NC ↦ {g ∣ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b))}) |
2 | | snex 4112 |
. . . . . . . . . 10
⊢ {x} ∈
V |
3 | 2 | otelins2 5792 |
. . . . . . . . 9
⊢ (〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ Ins2 Ins3 ( S ∘ SI Pw1Fn ) ↔ 〈{{a}}, 〈n, m〉〉 ∈ Ins3 ( S ∘ SI Pw1Fn )) |
4 | | vex 2863 |
. . . . . . . . . 10
⊢ m ∈
V |
5 | 4 | otelins3 5793 |
. . . . . . . . 9
⊢ (〈{{a}}, 〈n, m〉〉 ∈ Ins3 ( S ∘ SI Pw1Fn ) ↔ 〈{{a}},
n〉 ∈ ( S ∘ SI Pw1Fn )) |
6 | | ceexlem1 6174 |
. . . . . . . . 9
⊢ (〈{{a}},
n〉 ∈ ( S ∘ SI Pw1Fn ) ↔ ℘1a ∈ n) |
7 | 3, 5, 6 | 3bitri 262 |
. . . . . . . 8
⊢ (〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ Ins2 Ins3 ( S ∘ SI Pw1Fn ) ↔ ℘1a ∈ n) |
8 | | elimapw11c 4949 |
. . . . . . . . 9
⊢ (〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ )) “ ℘11c) ↔ ∃b〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ ( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈
))) |
9 | | elin 3220 |
. . . . . . . . . . 11
⊢ (〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ ( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔
(〈{{b}},
〈{{a}},
〈{x},
〈n,
m〉〉〉〉 ∈ Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∧ 〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ ))) |
10 | | snex 4112 |
. . . . . . . . . . . . . 14
⊢ {{a}} ∈
V |
11 | 10 | otelins2 5792 |
. . . . . . . . . . . . 13
⊢ (〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ↔ 〈{{b}}, 〈{x}, 〈n, m〉〉〉 ∈ Ins2 Ins2 ( S ∘ SI Pw1Fn )) |
12 | 2 | otelins2 5792 |
. . . . . . . . . . . . 13
⊢ (〈{{b}}, 〈{x}, 〈n, m〉〉〉 ∈ Ins2 Ins2 ( S ∘ SI Pw1Fn ) ↔ 〈{{b}}, 〈n, m〉〉 ∈ Ins2 ( S ∘ SI Pw1Fn )) |
13 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ n ∈
V |
14 | 13 | otelins2 5792 |
. . . . . . . . . . . . . 14
⊢ (〈{{b}}, 〈n, m〉〉 ∈ Ins2 ( S ∘ SI Pw1Fn ) ↔ 〈{{b}},
m〉 ∈ ( S ∘ SI Pw1Fn )) |
15 | | ceexlem1 6174 |
. . . . . . . . . . . . . 14
⊢ (〈{{b}},
m〉 ∈ ( S ∘ SI Pw1Fn ) ↔ ℘1b ∈ m) |
16 | 14, 15 | bitri 240 |
. . . . . . . . . . . . 13
⊢ (〈{{b}}, 〈n, m〉〉 ∈ Ins2 ( S ∘ SI Pw1Fn ) ↔ ℘1b ∈ m) |
17 | 11, 12, 16 | 3bitri 262 |
. . . . . . . . . . . 12
⊢ (〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ↔ ℘1b ∈ m) |
18 | 13, 4 | opex 4589 |
. . . . . . . . . . . . . 14
⊢ 〈n, m〉 ∈ V |
19 | 18 | oqelins4 5795 |
. . . . . . . . . . . . 13
⊢ (〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ ) ↔ 〈{{b}}, 〈{{a}},
{x}〉〉 ∈ SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈
)) |
20 | | snex 4112 |
. . . . . . . . . . . . . 14
⊢ {b} ∈
V |
21 | | snex 4112 |
. . . . . . . . . . . . . 14
⊢ {a} ∈
V |
22 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ x ∈
V |
23 | 20, 21, 22 | otsnelsi3 5806 |
. . . . . . . . . . . . 13
⊢ (〈{{b}}, 〈{{a}},
{x}〉〉 ∈ SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔
〈{b},
〈{a},
x〉〉 ∈ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈
)) |
24 | | elrn2 4898 |
. . . . . . . . . . . . . 14
⊢ (〈{b}, 〈{a}, x〉〉 ∈ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔
∃g〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ ( Ins4 ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈
)) |
25 | | elin 3220 |
. . . . . . . . . . . . . . . 16
⊢ (〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ ( Ins4 ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔
(〈g,
〈{b},
〈{a},
x〉〉〉 ∈ Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∧ 〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ Ins2 Ins2 ≈ )) |
26 | 22 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ↔ 〈g, 〈{b}, {a}〉〉 ∈ ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c)) |
27 | 20, 21 | opex 4589 |
. . . . . . . . . . . . . . . . . . 19
⊢ 〈{b}, {a}〉 ∈ V |
28 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ f ∈
V |
29 | 28 | brfns 5834 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (f Fns b ↔ f Fn
b) |
30 | | brco 4884 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (f( S ∘ Image2nd )a ↔ ∃x(fImage2nd x ∧ x S a)) |
31 | 28, 22 | brimage 5794 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (fImage2nd x ↔ x =
(2nd “ f)) |
32 | | dfrn5 5509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ran f = (2nd “ f) |
33 | 32 | eqeq2i 2363 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (x = ran f ↔
x = (2nd “ f)) |
34 | 31, 33 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (fImage2nd x ↔ x = ran
f) |
35 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ a ∈
V |
36 | 22, 35 | brsset 4759 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (x S a ↔ x ⊆ a) |
37 | 34, 36 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((fImage2nd x ∧ x S a) ↔ (x =
ran f ∧
x ⊆
a)) |
38 | 37 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃x(fImage2nd x ∧ x S a) ↔ ∃x(x = ran f ∧ x ⊆ a)) |
39 | 28 | rnex 5108 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ran f ∈
V |
40 | | sseq1 3293 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (x = ran f →
(x ⊆
a ↔ ran f ⊆ a)) |
41 | 39, 40 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃x(x = ran f ∧ x ⊆ a) ↔
ran f ⊆
a) |
42 | 30, 38, 41 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (f( S ∘ Image2nd )a ↔ ran f
⊆ a) |
43 | 29, 42 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((f Fns b ∧ f( S ∘ Image2nd )a) ↔ (f Fn
b ∧ ran
f ⊆
a)) |
44 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (f( Fns ⊗ ( S ∘
Image2nd ))〈b, a〉 ↔ 〈f, 〈b, a〉〉 ∈ ( Fns ⊗ ( S ∘ Image2nd ))) |
45 | | trtxp 5782 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (f( Fns ⊗ ( S ∘
Image2nd ))〈b, a〉 ↔ (f
Fns b ∧ f( S ∘
Image2nd )a)) |
46 | 44, 45 | bitr3i 242 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈f, 〈b, a〉〉 ∈ ( Fns ⊗ ( S ∘ Image2nd )) ↔ (f Fns b ∧ f( S ∘ Image2nd )a)) |
47 | | df-f 4792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (f:b–→a
↔ (f Fn b ∧ ran f ⊆ a)) |
48 | 43, 46, 47 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈f, 〈b, a〉〉 ∈ ( Fns ⊗ ( S ∘ Image2nd )) ↔ f:b–→a) |
49 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ b ∈
V |
50 | 28, 49, 35 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{f}, 〈{b}, {a}〉〉 ∈ SI3 ( Fns
⊗ ( S ∘
Image2nd )) ↔ 〈f, 〈b, a〉〉 ∈ ( Fns ⊗
( S ∘
Image2nd ))) |
51 | 35, 49, 28 | elmap 6018 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (f ∈ (a ↑m b) ↔ f:b–→a) |
52 | 48, 50, 51 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{f}, 〈{b}, {a}〉〉 ∈ SI3 ( Fns
⊗ ( S ∘
Image2nd )) ↔ f ∈ (a
↑m b)) |
53 | 27, 52 | releqel 5808 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈g, 〈{b}, {a}〉〉 ∈ ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ↔ g = (a
↑m b)) |
54 | 26, 53 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ (〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ↔ g = (a ↑m b)) |
55 | 20 | otelins2 5792 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ Ins2 Ins2 ≈ ↔ 〈g, 〈{a}, x〉〉 ∈ Ins2 ≈ ) |
56 | 21 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈g, 〈{a}, x〉〉 ∈ Ins2 ≈ ↔ 〈g, x〉 ∈ ≈ ) |
57 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . 19
⊢ (g ≈ x
↔ 〈g, x〉 ∈ ≈
) |
58 | 56, 57 | bitr4i 243 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈g, 〈{a}, x〉〉 ∈ Ins2 ≈ ↔ g ≈ x) |
59 | | ensym 6038 |
. . . . . . . . . . . . . . . . . 18
⊢ (g ≈ x
↔ x ≈ g) |
60 | 55, 58, 59 | 3bitri 262 |
. . . . . . . . . . . . . . . . 17
⊢ (〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ Ins2 Ins2 ≈ ↔ x ≈ g) |
61 | 54, 60 | anbi12i 678 |
. . . . . . . . . . . . . . . 16
⊢ ((〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∧ 〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ Ins2 Ins2 ≈ ) ↔ (g = (a
↑m b) ∧ x ≈
g)) |
62 | 25, 61 | bitri 240 |
. . . . . . . . . . . . . . 15
⊢ (〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ ( Ins4 ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔
(g = (a
↑m b) ∧ x ≈
g)) |
63 | 62 | exbii 1582 |
. . . . . . . . . . . . . 14
⊢ (∃g〈g, 〈{b}, 〈{a}, x〉〉〉 ∈ ( Ins4 ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔
∃g(g = (a ↑m b) ∧ x ≈ g)) |
64 | | ovex 5552 |
. . . . . . . . . . . . . . 15
⊢ (a ↑m b) ∈
V |
65 | | breq2 4644 |
. . . . . . . . . . . . . . 15
⊢ (g = (a
↑m b) →
(x ≈ g ↔ x
≈ (a ↑m
b))) |
66 | 64, 65 | ceqsexv 2895 |
. . . . . . . . . . . . . 14
⊢ (∃g(g = (a
↑m b) ∧ x ≈
g) ↔ x ≈ (a
↑m b)) |
67 | 24, 63, 66 | 3bitri 262 |
. . . . . . . . . . . . 13
⊢ (〈{b}, 〈{a}, x〉〉 ∈ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔
x ≈ (a ↑m b)) |
68 | 19, 23, 67 | 3bitri 262 |
. . . . . . . . . . . 12
⊢ (〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ ) ↔ x ≈ (a
↑m b)) |
69 | 17, 68 | anbi12i 678 |
. . . . . . . . . . 11
⊢ ((〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∧ 〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ )) ↔ (℘1b ∈ m ∧ x ≈ (a
↑m b))) |
70 | 9, 69 | bitri 240 |
. . . . . . . . . 10
⊢ (〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ ( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔
(℘1b ∈ m ∧ x ≈ (a
↑m b))) |
71 | 70 | exbii 1582 |
. . . . . . . . 9
⊢ (∃b〈{{b}}, 〈{{a}}, 〈{x}, 〈n, m〉〉〉〉 ∈ ( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔
∃b(℘1b ∈ m ∧ x ≈ (a
↑m b))) |
72 | 8, 71 | bitri 240 |
. . . . . . . 8
⊢ (〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ )) “ ℘11c) ↔ ∃b(℘1b ∈ m ∧ x ≈ (a
↑m b))) |
73 | 7, 72 | anbi12i 678 |
. . . . . . 7
⊢ ((〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∧ 〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ )) “ ℘11c)) ↔ (℘1a ∈ n ∧ ∃b(℘1b ∈ m ∧ x ≈ (a
↑m b)))) |
74 | | elin 3220 |
. . . . . . 7
⊢ (〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ ( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ )) “ ℘11c)) ↔ (〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∧ 〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ )) “ ℘11c))) |
75 | | 3anass 938 |
. . . . . . . . 9
⊢ ((℘1a ∈ n ∧ ℘1b ∈ m ∧ x ≈ (a
↑m b)) ↔ (℘1a ∈ n ∧ (℘1b ∈ m ∧ x ≈ (a
↑m b)))) |
76 | 75 | exbii 1582 |
. . . . . . . 8
⊢ (∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ x ≈ (a
↑m b)) ↔ ∃b(℘1a ∈ n ∧ (℘1b ∈ m ∧ x ≈ (a
↑m b)))) |
77 | | 19.42v 1905 |
. . . . . . . 8
⊢ (∃b(℘1a ∈ n ∧ (℘1b ∈ m ∧ x ≈ (a
↑m b))) ↔
(℘1a ∈ n ∧ ∃b(℘1b ∈ m ∧ x ≈ (a
↑m b)))) |
78 | 76, 77 | bitri 240 |
. . . . . . 7
⊢ (∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ x ≈ (a
↑m b)) ↔ (℘1a ∈ n ∧ ∃b(℘1b ∈ m ∧ x ≈ (a
↑m b)))) |
79 | 73, 74, 78 | 3bitr4i 268 |
. . . . . 6
⊢ (〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ ( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ )) “ ℘11c)) ↔ ∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ x ≈ (a
↑m b))) |
80 | 79 | exbii 1582 |
. . . . 5
⊢ (∃a〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ ( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ )) “ ℘11c)) ↔ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ x ≈ (a
↑m b))) |
81 | | elimapw11c 4949 |
. . . . 5
⊢ (〈{x}, 〈n, m〉〉 ∈ (( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
“ ℘11c))
“ ℘11c)
↔ ∃a〈{{a}}, 〈{x}, 〈n, m〉〉〉 ∈ ( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
“ ℘11c))) |
82 | | breq1 4643 |
. . . . . . . 8
⊢ (g = x →
(g ≈ (a ↑m b) ↔ x
≈ (a ↑m
b))) |
83 | 82 | 3anbi3d 1258 |
. . . . . . 7
⊢ (g = x →
((℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b)) ↔ (℘1a ∈ n ∧ ℘1b ∈ m ∧ x ≈ (a
↑m b)))) |
84 | 83 | 2exbidv 1628 |
. . . . . 6
⊢ (g = x →
(∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b)) ↔ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ x ≈ (a
↑m b)))) |
85 | 22, 84 | elab 2986 |
. . . . 5
⊢ (x ∈ {g ∣ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b))} ↔ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ x ≈ (a
↑m b))) |
86 | 80, 81, 85 | 3bitr4i 268 |
. . . 4
⊢ (〈{x}, 〈n, m〉〉 ∈ (( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
“ ℘11c))
“ ℘11c)
↔ x ∈ {g ∣ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b))}) |
87 | 86 | releqmpt2 5810 |
. . 3
⊢ ((( NC × NC ) × V)
∖ (( Ins2 S ⊕ Ins3 (( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
“ ℘11c))
“ ℘11c))
“ 1c)) = (n ∈ NC , m ∈ NC ↦ {g ∣ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b))}) |
88 | 1, 87 | eqtr4i 2376 |
. 2
⊢
↑c = ((( NC × NC ) × V) ∖ ((
Ins2 S ⊕
Ins3 (( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ )) “ ℘11c)) “ ℘11c)) “
1c)) |
89 | | ncsex 6112 |
. . 3
⊢ NC ∈
V |
90 | | ssetex 4745 |
. . . . . . . 8
⊢ S ∈
V |
91 | | pw1fnex 5853 |
. . . . . . . . 9
⊢ Pw1Fn ∈
V |
92 | 91 | siex 4754 |
. . . . . . . 8
⊢ SI Pw1Fn ∈ V |
93 | 90, 92 | coex 4751 |
. . . . . . 7
⊢ ( S ∘ SI Pw1Fn ) ∈ V |
94 | 93 | ins3ex 5799 |
. . . . . 6
⊢ Ins3 ( S ∘ SI Pw1Fn ) ∈
V |
95 | 94 | ins2ex 5798 |
. . . . 5
⊢ Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∈ V |
96 | 93 | ins2ex 5798 |
. . . . . . . . 9
⊢ Ins2 ( S ∘ SI Pw1Fn ) ∈
V |
97 | 96 | ins2ex 5798 |
. . . . . . . 8
⊢ Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∈ V |
98 | 97 | ins2ex 5798 |
. . . . . . 7
⊢ Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∈
V |
99 | 90 | ins3ex 5799 |
. . . . . . . . . . . . . . 15
⊢ Ins3 S ∈ V |
100 | | fnsex 5833 |
. . . . . . . . . . . . . . . . . 18
⊢ Fns ∈
V |
101 | | 2ndex 5113 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2nd
∈ V |
102 | 101 | imageex 5802 |
. . . . . . . . . . . . . . . . . . 19
⊢ Image2nd
∈ V |
103 | 90, 102 | coex 4751 |
. . . . . . . . . . . . . . . . . 18
⊢ ( S ∘
Image2nd ) ∈ V |
104 | 100, 103 | txpex 5786 |
. . . . . . . . . . . . . . . . 17
⊢ ( Fns ⊗ ( S ∘ Image2nd )) ∈ V |
105 | 104 | si3ex 5807 |
. . . . . . . . . . . . . . . 16
⊢ SI3 ( Fns
⊗ ( S ∘
Image2nd )) ∈ V |
106 | 105 | ins2ex 5798 |
. . . . . . . . . . . . . . 15
⊢ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd )) ∈ V |
107 | 99, 106 | symdifex 4109 |
. . . . . . . . . . . . . 14
⊢ ( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) ∈ V |
108 | | 1cex 4143 |
. . . . . . . . . . . . . 14
⊢
1c ∈
V |
109 | 107, 108 | imaex 4748 |
. . . . . . . . . . . . 13
⊢ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∈ V |
110 | 109 | complex 4105 |
. . . . . . . . . . . 12
⊢ ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∈ V |
111 | 110 | ins4ex 5800 |
. . . . . . . . . . 11
⊢ Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∈ V |
112 | | enex 6032 |
. . . . . . . . . . . . 13
⊢ ≈ ∈ V |
113 | 112 | ins2ex 5798 |
. . . . . . . . . . . 12
⊢ Ins2 ≈ ∈
V |
114 | 113 | ins2ex 5798 |
. . . . . . . . . . 11
⊢ Ins2 Ins2 ≈ ∈ V |
115 | 111, 114 | inex 4106 |
. . . . . . . . . 10
⊢ ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ∈ V |
116 | 115 | rnex 5108 |
. . . . . . . . 9
⊢ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ∈ V |
117 | 116 | si3ex 5807 |
. . . . . . . 8
⊢ SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ∈ V |
118 | 117 | ins4ex 5800 |
. . . . . . 7
⊢ Ins4 SI3
ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∩ Ins2 Ins2 ≈ ) ∈
V |
119 | 98, 118 | inex 4106 |
. . . . . 6
⊢ ( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ∈ V |
120 | 108 | pw1ex 4304 |
. . . . . 6
⊢ ℘11c ∈ V |
121 | 119, 120 | imaex 4748 |
. . . . 5
⊢ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
“ ℘11c)
∈ V |
122 | 95, 121 | inex 4106 |
. . . 4
⊢ ( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
“ ℘11c))
∈ V |
123 | 122, 120 | imaex 4748 |
. . 3
⊢ (( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
“ ℘11c))
“ ℘11c)
∈ V |
124 | 89, 89, 123 | mpt2exlem 5812 |
. 2
⊢ ((( NC × NC ) × V)
∖ (( Ins2 S ⊕ Ins3 (( Ins2 Ins3 ( S ∘ SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S ∘ SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
“ ℘11c))
“ ℘11c))
“ 1c)) ∈
V |
125 | 88, 124 | eqeltri 2423 |
1
⊢
↑c ∈
V |