NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ceex GIF version

Theorem ceex 6175
Description: Cardinal exponentiation is stratified. (Contributed by SF, 3-Mar-2015.)
Assertion
Ref Expression
ceex c V

Proof of Theorem ceex
Dummy variables a b g m n x f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ce 6107 . . 3 c = (n NC , m NC {g ab(1a n 1b m g ≈ (am b))})
2 snex 4112 . . . . . . . . . 10 {x} V
32otelins2 5792 . . . . . . . . 9 ({{a}}, {x}, n, m Ins2 Ins3 ( S SI Pw1Fn ) ↔ {{a}}, n, m Ins3 ( S SI Pw1Fn ))
4 vex 2863 . . . . . . . . . 10 m V
54otelins3 5793 . . . . . . . . 9 ({{a}}, n, m Ins3 ( S SI Pw1Fn ) ↔ {{a}}, n ( S SI Pw1Fn ))
6 ceexlem1 6174 . . . . . . . . 9 ({{a}}, n ( S SI Pw1Fn ) ↔ 1a n)
73, 5, 63bitri 262 . . . . . . . 8 ({{a}}, {x}, n, m Ins2 Ins3 ( S SI Pw1Fn ) ↔ 1a n)
8 elimapw11c 4949 . . . . . . . . 9 ({{a}}, {x}, n, m (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c) ↔ b{{b}}, {{a}}, {x}, n, m ( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )))
9 elin 3220 . . . . . . . . . . 11 ({{b}}, {{a}}, {x}, n, m ( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔ ({{b}}, {{a}}, {x}, n, m Ins2 Ins2 Ins2 ( S SI Pw1Fn ) {{b}}, {{a}}, {x}, n, m Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )))
10 snex 4112 . . . . . . . . . . . . . 14 {{a}} V
1110otelins2 5792 . . . . . . . . . . . . 13 ({{b}}, {{a}}, {x}, n, m Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ↔ {{b}}, {x}, n, m Ins2 Ins2 ( S SI Pw1Fn ))
122otelins2 5792 . . . . . . . . . . . . 13 ({{b}}, {x}, n, m Ins2 Ins2 ( S SI Pw1Fn ) ↔ {{b}}, n, m Ins2 ( S SI Pw1Fn ))
13 vex 2863 . . . . . . . . . . . . . . 15 n V
1413otelins2 5792 . . . . . . . . . . . . . 14 ({{b}}, n, m Ins2 ( S SI Pw1Fn ) ↔ {{b}}, m ( S SI Pw1Fn ))
15 ceexlem1 6174 . . . . . . . . . . . . . 14 ({{b}}, m ( S SI Pw1Fn ) ↔ 1b m)
1614, 15bitri 240 . . . . . . . . . . . . 13 ({{b}}, n, m Ins2 ( S SI Pw1Fn ) ↔ 1b m)
1711, 12, 163bitri 262 . . . . . . . . . . . 12 ({{b}}, {{a}}, {x}, n, m Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ↔ 1b m)
1813, 4opex 4589 . . . . . . . . . . . . . 14 n, m V
1918oqelins4 5795 . . . . . . . . . . . . 13 ({{b}}, {{a}}, {x}, n, m Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ {{b}}, {{a}}, {x} SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
20 snex 4112 . . . . . . . . . . . . . 14 {b} V
21 snex 4112 . . . . . . . . . . . . . 14 {a} V
22 vex 2863 . . . . . . . . . . . . . 14 x V
2320, 21, 22otsnelsi3 5806 . . . . . . . . . . . . 13 ({{b}}, {{a}}, {x} SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ {b}, {a}, x ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
24 elrn2 4898 . . . . . . . . . . . . . 14 ({b}, {a}, x ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ gg, {b}, {a}, x ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
25 elin 3220 . . . . . . . . . . . . . . . 16 (g, {b}, {a}, x ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ (g, {b}, {a}, x Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) g, {b}, {a}, x Ins2 Ins2 ≈ ))
2622oqelins4 5795 . . . . . . . . . . . . . . . . . 18 (g, {b}, {a}, x Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ↔ g, {b}, {a} ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c))
2720, 21opex 4589 . . . . . . . . . . . . . . . . . . 19 {b}, {a} V
28 vex 2863 . . . . . . . . . . . . . . . . . . . . . . 23 f V
2928brfns 5834 . . . . . . . . . . . . . . . . . . . . . 22 (f Fns bf Fn b)
30 brco 4884 . . . . . . . . . . . . . . . . . . . . . . 23 (f( S Image2nd )ax(fImage2nd x x S a))
3128, 22brimage 5794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (fImage2nd xx = (2ndf))
32 dfrn5 5509 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ran f = (2ndf)
3332eqeq2i 2363 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (x = ran fx = (2ndf))
3431, 33bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (fImage2nd xx = ran f)
35 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . . . 26 a V
3622, 35brsset 4759 . . . . . . . . . . . . . . . . . . . . . . . . 25 (x S ax a)
3734, 36anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . 24 ((fImage2nd x x S a) ↔ (x = ran f x a))
3837exbii 1582 . . . . . . . . . . . . . . . . . . . . . . 23 (x(fImage2nd x x S a) ↔ x(x = ran f x a))
3928rnex 5108 . . . . . . . . . . . . . . . . . . . . . . . 24 ran f V
40 sseq1 3293 . . . . . . . . . . . . . . . . . . . . . . . 24 (x = ran f → (x a ↔ ran f a))
4139, 40ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . 23 (x(x = ran f x a) ↔ ran f a)
4230, 38, 413bitri 262 . . . . . . . . . . . . . . . . . . . . . 22 (f( S Image2nd )a ↔ ran f a)
4329, 42anbi12i 678 . . . . . . . . . . . . . . . . . . . . 21 ((f Fns b f( S Image2nd )a) ↔ (f Fn b ran f a))
44 df-br 4641 . . . . . . . . . . . . . . . . . . . . . 22 (f( Fns ⊗ ( S Image2nd ))b, af, b, a ( Fns ⊗ ( S Image2nd )))
45 trtxp 5782 . . . . . . . . . . . . . . . . . . . . . 22 (f( Fns ⊗ ( S Image2nd ))b, a ↔ (f Fns b f( S Image2nd )a))
4644, 45bitr3i 242 . . . . . . . . . . . . . . . . . . . . 21 (f, b, a ( Fns ⊗ ( S Image2nd )) ↔ (f Fns b f( S Image2nd )a))
47 df-f 4792 . . . . . . . . . . . . . . . . . . . . 21 (f:b–→a ↔ (f Fn b ran f a))
4843, 46, 473bitr4i 268 . . . . . . . . . . . . . . . . . . . 20 (f, b, a ( Fns ⊗ ( S Image2nd )) ↔ f:b–→a)
49 vex 2863 . . . . . . . . . . . . . . . . . . . . 21 b V
5028, 49, 35otsnelsi3 5806 . . . . . . . . . . . . . . . . . . . 20 ({f}, {b}, {a} SI3 ( Fns ⊗ ( S Image2nd )) ↔ f, b, a ( Fns ⊗ ( S Image2nd )))
5135, 49, 28elmap 6018 . . . . . . . . . . . . . . . . . . . 20 (f (am b) ↔ f:b–→a)
5248, 50, 513bitr4i 268 . . . . . . . . . . . . . . . . . . 19 ({f}, {b}, {a} SI3 ( Fns ⊗ ( S Image2nd )) ↔ f (am b))
5327, 52releqel 5808 . . . . . . . . . . . . . . . . . 18 (g, {b}, {a} ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ↔ g = (am b))
5426, 53bitri 240 . . . . . . . . . . . . . . . . 17 (g, {b}, {a}, x Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ↔ g = (am b))
5520otelins2 5792 . . . . . . . . . . . . . . . . . 18 (g, {b}, {a}, x Ins2 Ins2 ≈ ↔ g, {a}, x Ins2 ≈ )
5621otelins2 5792 . . . . . . . . . . . . . . . . . . 19 (g, {a}, x Ins2 ≈ ↔ g, x ≈ )
57 df-br 4641 . . . . . . . . . . . . . . . . . . 19 (gxg, x ≈ )
5856, 57bitr4i 243 . . . . . . . . . . . . . . . . . 18 (g, {a}, x Ins2 ≈ ↔ gx)
59 ensym 6038 . . . . . . . . . . . . . . . . . 18 (gxxg)
6055, 58, 593bitri 262 . . . . . . . . . . . . . . . . 17 (g, {b}, {a}, x Ins2 Ins2 ≈ ↔ xg)
6154, 60anbi12i 678 . . . . . . . . . . . . . . . 16 ((g, {b}, {a}, x Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) g, {b}, {a}, x Ins2 Ins2 ≈ ) ↔ (g = (am b) xg))
6225, 61bitri 240 . . . . . . . . . . . . . . 15 (g, {b}, {a}, x ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ (g = (am b) xg))
6362exbii 1582 . . . . . . . . . . . . . 14 (gg, {b}, {a}, x ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ g(g = (am b) xg))
64 ovex 5552 . . . . . . . . . . . . . . 15 (am b) V
65 breq2 4644 . . . . . . . . . . . . . . 15 (g = (am b) → (xgx ≈ (am b)))
6664, 65ceqsexv 2895 . . . . . . . . . . . . . 14 (g(g = (am b) xg) ↔ x ≈ (am b))
6724, 63, 663bitri 262 . . . . . . . . . . . . 13 ({b}, {a}, x ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ x ≈ (am b))
6819, 23, 673bitri 262 . . . . . . . . . . . 12 ({{b}}, {{a}}, {x}, n, m Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ x ≈ (am b))
6917, 68anbi12i 678 . . . . . . . . . . 11 (({{b}}, {{a}}, {x}, n, m Ins2 Ins2 Ins2 ( S SI Pw1Fn ) {{b}}, {{a}}, {x}, n, m Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔ (1b m x ≈ (am b)))
709, 69bitri 240 . . . . . . . . . 10 ({{b}}, {{a}}, {x}, n, m ( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔ (1b m x ≈ (am b)))
7170exbii 1582 . . . . . . . . 9 (b{{b}}, {{a}}, {x}, n, m ( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔ b(1b m x ≈ (am b)))
728, 71bitri 240 . . . . . . . 8 ({{a}}, {x}, n, m (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c) ↔ b(1b m x ≈ (am b)))
737, 72anbi12i 678 . . . . . . 7 (({{a}}, {x}, n, m Ins2 Ins3 ( S SI Pw1Fn ) {{a}}, {x}, n, m (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) ↔ (1a n b(1b m x ≈ (am b))))
74 elin 3220 . . . . . . 7 ({{a}}, {x}, n, m ( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) ↔ ({{a}}, {x}, n, m Ins2 Ins3 ( S SI Pw1Fn ) {{a}}, {x}, n, m (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)))
75 3anass 938 . . . . . . . . 9 ((1a n 1b m x ≈ (am b)) ↔ (1a n (1b m x ≈ (am b))))
7675exbii 1582 . . . . . . . 8 (b(1a n 1b m x ≈ (am b)) ↔ b(1a n (1b m x ≈ (am b))))
77 19.42v 1905 . . . . . . . 8 (b(1a n (1b m x ≈ (am b))) ↔ (1a n b(1b m x ≈ (am b))))
7876, 77bitri 240 . . . . . . 7 (b(1a n 1b m x ≈ (am b)) ↔ (1a n b(1b m x ≈ (am b))))
7973, 74, 783bitr4i 268 . . . . . 6 ({{a}}, {x}, n, m ( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) ↔ b(1a n 1b m x ≈ (am b)))
8079exbii 1582 . . . . 5 (a{{a}}, {x}, n, m ( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) ↔ ab(1a n 1b m x ≈ (am b)))
81 elimapw11c 4949 . . . . 5 ({x}, n, m (( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) “ 11c) ↔ a{{a}}, {x}, n, m ( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)))
82 breq1 4643 . . . . . . . 8 (g = x → (g ≈ (am b) ↔ x ≈ (am b)))
83823anbi3d 1258 . . . . . . 7 (g = x → ((1a n 1b m g ≈ (am b)) ↔ (1a n 1b m x ≈ (am b))))
84832exbidv 1628 . . . . . 6 (g = x → (ab(1a n 1b m g ≈ (am b)) ↔ ab(1a n 1b m x ≈ (am b))))
8522, 84elab 2986 . . . . 5 (x {g ab(1a n 1b m g ≈ (am b))} ↔ ab(1a n 1b m x ≈ (am b)))
8680, 81, 853bitr4i 268 . . . 4 ({x}, n, m (( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) “ 11c) ↔ x {g ab(1a n 1b m g ≈ (am b))})
8786releqmpt2 5810 . . 3 ((( NC × NC ) × V) (( Ins2 S Ins3 (( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) “ 11c)) “ 1c)) = (n NC , m NC {g ab(1a n 1b m g ≈ (am b))})
881, 87eqtr4i 2376 . 2 c = ((( NC × NC ) × V) (( Ins2 S Ins3 (( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) “ 11c)) “ 1c))
89 ncsex 6112 . . 3 NC V
90 ssetex 4745 . . . . . . . 8 S V
91 pw1fnex 5853 . . . . . . . . 9 Pw1Fn V
9291siex 4754 . . . . . . . 8 SI Pw1Fn V
9390, 92coex 4751 . . . . . . 7 ( S SI Pw1Fn ) V
9493ins3ex 5799 . . . . . 6 Ins3 ( S SI Pw1Fn ) V
9594ins2ex 5798 . . . . 5 Ins2 Ins3 ( S SI Pw1Fn ) V
9693ins2ex 5798 . . . . . . . . 9 Ins2 ( S SI Pw1Fn ) V
9796ins2ex 5798 . . . . . . . 8 Ins2 Ins2 ( S SI Pw1Fn ) V
9897ins2ex 5798 . . . . . . 7 Ins2 Ins2 Ins2 ( S SI Pw1Fn ) V
9990ins3ex 5799 . . . . . . . . . . . . . . 15 Ins3 S V
100 fnsex 5833 . . . . . . . . . . . . . . . . . 18 Fns V
101 2ndex 5113 . . . . . . . . . . . . . . . . . . . 20 2nd V
102101imageex 5802 . . . . . . . . . . . . . . . . . . 19 Image2nd V
10390, 102coex 4751 . . . . . . . . . . . . . . . . . 18 ( S Image2nd ) V
104100, 103txpex 5786 . . . . . . . . . . . . . . . . 17 ( Fns ⊗ ( S Image2nd )) V
105104si3ex 5807 . . . . . . . . . . . . . . . 16 SI3 ( Fns ⊗ ( S Image2nd )) V
106105ins2ex 5798 . . . . . . . . . . . . . . 15 Ins2 SI3 ( Fns ⊗ ( S Image2nd )) V
10799, 106symdifex 4109 . . . . . . . . . . . . . 14 ( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) V
108 1cex 4143 . . . . . . . . . . . . . 14 1c V
109107, 108imaex 4748 . . . . . . . . . . . . 13 (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) V
110109complex 4105 . . . . . . . . . . . 12 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) V
111110ins4ex 5800 . . . . . . . . . . 11 Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) V
112 enex 6032 . . . . . . . . . . . . 13 V
113112ins2ex 5798 . . . . . . . . . . . 12 Ins2 V
114113ins2ex 5798 . . . . . . . . . . 11 Ins2 Ins2 V
115111, 114inex 4106 . . . . . . . . . 10 ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) V
116115rnex 5108 . . . . . . . . 9 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) V
117116si3ex 5807 . . . . . . . 8 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) V
118117ins4ex 5800 . . . . . . 7 Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) V
11998, 118inex 4106 . . . . . 6 ( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) V
120108pw1ex 4304 . . . . . 6 11c V
121119, 120imaex 4748 . . . . 5 (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c) V
12295, 121inex 4106 . . . 4 ( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) V
123122, 120imaex 4748 . . 3 (( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) “ 11c) V
12489, 89, 123mpt2exlem 5812 . 2 ((( NC × NC ) × V) (( Ins2 S Ins3 (( Ins2 Ins3 ( S SI Pw1Fn ) ∩ (( Ins2 Ins2 Ins2 ( S SI Pw1Fn ) ∩ Ins4 SI3 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 11c)) “ 11c)) “ 1c)) V
12588, 124eqeltri 2423 1 c V
Colors of variables: wff setvar class
Syntax hints:   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  {cab 2339  Vcvv 2860  ccompl 3206   cdif 3207  cin 3209  csymdif 3210   wss 3258  {csn 3738  1cc1c 4135  1cpw1 4136  cop 4562   class class class wbr 4640   S csset 4720   SI csi 4721   ccom 4722  cima 4723   × cxp 4771  ran crn 4774   Fn wfn 4777  –→wf 4778  2nd c2nd 4784  (class class class)co 5526   cmpt2 5654  ctxp 5736   Ins2 cins2 5750   Ins3 cins3 5752  Imagecimage 5754   Ins4 cins4 5756   SI3 csi3 5758   Fns cfns 5762   Pw1Fn cpw1fn 5766  m cmap 6000  cen 6029   NC cncs 6089  c cce 6097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-ce 6107
This theorem is referenced by:  ce0nn  6181  spacvallem1  6282
  Copyright terms: Public domain W3C validator