NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fnce GIF version

Theorem fnce 6177
Description: Functionhood statement for cardinal exponentiation. (Contributed by SF, 6-Mar-2015.)
Assertion
Ref Expression
fnce c Fn ( NC × NC )

Proof of Theorem fnce
Dummy variables a b g m n p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovcelem1 6172 . . . . 5 ((n NC m NC ) → {g ab(1a n 1b m g ≈ (am b))} V)
2 isset 2864 . . . . 5 ({g ab(1a n 1b m g ≈ (am b))} V ↔ p p = {g ab(1a n 1b m g ≈ (am b))})
31, 2sylib 188 . . . 4 ((n NC m NC ) → p p = {g ab(1a n 1b m g ≈ (am b))})
4 moeq 3013 . . . . 5 ∃*p p = {g ab(1a n 1b m g ≈ (am b))}
5 eu5 2242 . . . . 5 (∃!p p = {g ab(1a n 1b m g ≈ (am b))} ↔ (p p = {g ab(1a n 1b m g ≈ (am b))} ∃*p p = {g ab(1a n 1b m g ≈ (am b))}))
64, 5mpbiran2 885 . . . 4 (∃!p p = {g ab(1a n 1b m g ≈ (am b))} ↔ p p = {g ab(1a n 1b m g ≈ (am b))})
73, 6sylibr 203 . . 3 ((n NC m NC ) → ∃!p p = {g ab(1a n 1b m g ≈ (am b))})
87fnoprab 5587 . 2 {n, m, p ((n NC m NC ) p = {g ab(1a n 1b m g ≈ (am b))})} Fn {n, m (n NC m NC )}
9 df-ce 6107 . . . . 5 c = (n NC , m NC {g ab(1a n 1b m g ≈ (am b))})
10 df-mpt2 5655 . . . . 5 (n NC , m NC {g ab(1a n 1b m g ≈ (am b))}) = {n, m, p ((n NC m NC ) p = {g ab(1a n 1b m g ≈ (am b))})}
119, 10eqtri 2373 . . . 4 c = {n, m, p ((n NC m NC ) p = {g ab(1a n 1b m g ≈ (am b))})}
1211fneq1i 5179 . . 3 ( ↑c Fn ( NC × NC ) ↔ {n, m, p ((n NC m NC ) p = {g ab(1a n 1b m g ≈ (am b))})} Fn ( NC × NC ))
13 df-xp 4785 . . . 4 ( NC × NC ) = {n, m (n NC m NC )}
1413fneq2i 5180 . . 3 ({n, m, p ((n NC m NC ) p = {g ab(1a n 1b m g ≈ (am b))})} Fn ( NC × NC ) ↔ {n, m, p ((n NC m NC ) p = {g ab(1a n 1b m g ≈ (am b))})} Fn {n, m (n NC m NC )})
1512, 14bitri 240 . 2 ( ↑c Fn ( NC × NC ) ↔ {n, m, p ((n NC m NC ) p = {g ab(1a n 1b m g ≈ (am b))})} Fn {n, m (n NC m NC )})
168, 15mpbir 200 1 c Fn ( NC × NC )
Colors of variables: wff setvar class
Syntax hints:   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  ∃!weu 2204  ∃*wmo 2205  {cab 2339  Vcvv 2860  1cpw1 4136  {copab 4623   class class class wbr 4640   × cxp 4771   Fn wfn 4777  (class class class)co 5526  {coprab 5528   cmpt2 5654  m cmap 6000  cen 6029   NC cncs 6089  c cce 6097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-map 6002  df-en 6030  df-ce 6107
This theorem is referenced by:  fce  6189
  Copyright terms: Public domain W3C validator