Detailed syntax breakdown of Definition df-cnvk
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cA | 
. . 3
class A | 
| 2 | 1 | ccnvk 4176 | 
. 2
class ◡kA | 
| 3 |   | vx | 
. . . . . . . 8
setvar x | 
| 4 | 3 | cv 1641 | 
. . . . . . 7
class x | 
| 5 |   | vy | 
. . . . . . . . 9
setvar y | 
| 6 | 5 | cv 1641 | 
. . . . . . . 8
class y | 
| 7 |   | vz | 
. . . . . . . . 9
setvar z | 
| 8 | 7 | cv 1641 | 
. . . . . . . 8
class z | 
| 9 | 6, 8 | copk 4058 | 
. . . . . . 7
class ⟪y, z⟫ | 
| 10 | 4, 9 | wceq 1642 | 
. . . . . 6
wff x =
⟪y, z⟫ | 
| 11 | 8, 6 | copk 4058 | 
. . . . . . 7
class ⟪z, y⟫ | 
| 12 | 11, 1 | wcel 1710 | 
. . . . . 6
wff ⟪z, y⟫
∈ A | 
| 13 | 10, 12 | wa 358 | 
. . . . 5
wff (x
= ⟪y, z⟫ ∧
⟪z, y⟫ ∈
A) | 
| 14 | 13, 7 | wex 1541 | 
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ ⟪z,
y⟫ ∈ A) | 
| 15 | 14, 5 | wex 1541 | 
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ ⟪z,
y⟫ ∈ A) | 
| 16 | 15, 3 | cab 2339 | 
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ⟪z,
y⟫ ∈ A)} | 
| 17 | 2, 16 | wceq 1642 | 
1
wff ◡kA = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧
⟪z, y⟫ ∈
A)} |