Detailed syntax breakdown of Definition df-cnvk
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class A |
2 | 1 | ccnvk 4176 |
. 2
class ◡kA |
3 | | vx |
. . . . . . . 8
setvar x |
4 | 3 | cv 1641 |
. . . . . . 7
class x |
5 | | vy |
. . . . . . . . 9
setvar y |
6 | 5 | cv 1641 |
. . . . . . . 8
class y |
7 | | vz |
. . . . . . . . 9
setvar z |
8 | 7 | cv 1641 |
. . . . . . . 8
class z |
9 | 6, 8 | copk 4058 |
. . . . . . 7
class ⟪y, z⟫ |
10 | 4, 9 | wceq 1642 |
. . . . . 6
wff x =
⟪y, z⟫ |
11 | 8, 6 | copk 4058 |
. . . . . . 7
class ⟪z, y⟫ |
12 | 11, 1 | wcel 1710 |
. . . . . 6
wff ⟪z, y⟫
∈ A |
13 | 10, 12 | wa 358 |
. . . . 5
wff (x
= ⟪y, z⟫ ∧
⟪z, y⟫ ∈
A) |
14 | 13, 7 | wex 1541 |
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ ⟪z,
y⟫ ∈ A) |
15 | 14, 5 | wex 1541 |
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ ⟪z,
y⟫ ∈ A) |
16 | 15, 3 | cab 2339 |
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ⟪z,
y⟫ ∈ A)} |
17 | 2, 16 | wceq 1642 |
1
wff ◡kA = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧
⟪z, y⟫ ∈
A)} |