New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cnvkeq | GIF version |
Description: Equality theorem for Kuratowski converse. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
cnvkeq | ⊢ (A = B → ◡kA = ◡kB) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . . . . 5 ⊢ (A = B → (⟪z, y⟫ ∈ A ↔ ⟪z, y⟫ ∈ B)) | |
2 | 1 | anbi2d 684 | . . . 4 ⊢ (A = B → ((x = ⟪y, z⟫ ∧ ⟪z, y⟫ ∈ A) ↔ (x = ⟪y, z⟫ ∧ ⟪z, y⟫ ∈ B))) |
3 | 2 | 2exbidv 1628 | . . 3 ⊢ (A = B → (∃y∃z(x = ⟪y, z⟫ ∧ ⟪z, y⟫ ∈ A) ↔ ∃y∃z(x = ⟪y, z⟫ ∧ ⟪z, y⟫ ∈ B))) |
4 | 3 | abbidv 2468 | . 2 ⊢ (A = B → {x ∣ ∃y∃z(x = ⟪y, z⟫ ∧ ⟪z, y⟫ ∈ A)} = {x ∣ ∃y∃z(x = ⟪y, z⟫ ∧ ⟪z, y⟫ ∈ B)}) |
5 | df-cnvk 4187 | . 2 ⊢ ◡kA = {x ∣ ∃y∃z(x = ⟪y, z⟫ ∧ ⟪z, y⟫ ∈ A)} | |
6 | df-cnvk 4187 | . 2 ⊢ ◡kB = {x ∣ ∃y∃z(x = ⟪y, z⟫ ∧ ⟪z, y⟫ ∈ B)} | |
7 | 4, 5, 6 | 3eqtr4g 2410 | 1 ⊢ (A = B → ◡kA = ◡kB) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 ⟪copk 4058 ◡kccnvk 4176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-cnvk 4187 |
This theorem is referenced by: cnvkeqi 4217 cnvkeqd 4218 cokeq2 4232 cnvkexg 4287 |
Copyright terms: Public domain | W3C validator |