Detailed syntax breakdown of Definition df-xpk
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class A |
2 | | cB |
. . 3
class B |
3 | 1, 2 | cxpk 4175 |
. 2
class (A ×k B) |
4 | | vx |
. . . . . . . 8
setvar x |
5 | 4 | cv 1641 |
. . . . . . 7
class x |
6 | | vy |
. . . . . . . . 9
setvar y |
7 | 6 | cv 1641 |
. . . . . . . 8
class y |
8 | | vz |
. . . . . . . . 9
setvar z |
9 | 8 | cv 1641 |
. . . . . . . 8
class z |
10 | 7, 9 | copk 4058 |
. . . . . . 7
class ⟪y, z⟫ |
11 | 5, 10 | wceq 1642 |
. . . . . 6
wff x =
⟪y, z⟫ |
12 | 7, 1 | wcel 1710 |
. . . . . . 7
wff y
∈ A |
13 | 9, 2 | wcel 1710 |
. . . . . . 7
wff z
∈ B |
14 | 12, 13 | wa 358 |
. . . . . 6
wff (y
∈ A ∧ z ∈ B) |
15 | 11, 14 | wa 358 |
. . . . 5
wff (x
= ⟪y, z⟫ ∧
(y ∈
A ∧
z ∈
B)) |
16 | 15, 8 | wex 1541 |
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ (y ∈ A ∧ z ∈ B)) |
17 | 16, 6 | wex 1541 |
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ (y ∈ A ∧ z ∈ B)) |
18 | 17, 4 | cab 2339 |
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ (y ∈ A ∧ z ∈ B))} |
19 | 3, 18 | wceq 1642 |
1
wff (A
×k B) = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ (y ∈ A ∧ z ∈ B))} |