NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkelcnvkg GIF version

Theorem opkelcnvkg 4250
Description: Kuratowski ordered pair membership in a Kuratowski converse. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
opkelcnvkg ((A V B W) → (⟪A, B kC ↔ ⟪B, A C))

Proof of Theorem opkelcnvkg
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnvk 4187 . 2 kC = {z xy(z = ⟪x, yy, x C)}
2 opkeq2 4061 . . 3 (x = A → ⟪y, x⟫ = ⟪y, A⟫)
32eleq1d 2419 . 2 (x = A → (⟪y, x C ↔ ⟪y, A C))
4 opkeq1 4060 . . 3 (y = B → ⟪y, A⟫ = ⟪B, A⟫)
54eleq1d 2419 . 2 (y = B → (⟪y, A C ↔ ⟪B, A C))
61, 3, 5opkelopkabg 4246 1 ((A V B W) → (⟪A, B kC ↔ ⟪B, A C))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  copk 4058  kccnvk 4176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-cnvk 4187
This theorem is referenced by:  opkelcnvk  4251  opkelcokg  4262
  Copyright terms: Public domain W3C validator