Detailed syntax breakdown of Definition df-idk
Step | Hyp | Ref
| Expression |
1 | | cidk 4185 |
. 2
class
Ik |
2 | | vx |
. . . . . . . 8
setvar x |
3 | 2 | cv 1641 |
. . . . . . 7
class x |
4 | | vy |
. . . . . . . . 9
setvar y |
5 | 4 | cv 1641 |
. . . . . . . 8
class y |
6 | | vz |
. . . . . . . . 9
setvar z |
7 | 6 | cv 1641 |
. . . . . . . 8
class z |
8 | 5, 7 | copk 4058 |
. . . . . . 7
class ⟪y, z⟫ |
9 | 3, 8 | wceq 1642 |
. . . . . 6
wff x =
⟪y, z⟫ |
10 | 4, 6 | weq 1643 |
. . . . . 6
wff y =
z |
11 | 9, 10 | wa 358 |
. . . . 5
wff (x
= ⟪y, z⟫ ∧
y = z) |
12 | 11, 6 | wex 1541 |
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ y = z) |
13 | 12, 4 | wex 1541 |
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ y = z) |
14 | 13, 2 | cab 2339 |
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ y = z)} |
15 | 1, 14 | wceq 1642 |
1
wff Ik = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ y = z)} |