Detailed syntax breakdown of Definition df-imagek
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cA | 
. . 3
class A | 
| 2 | 1 | cimagek 4183 | 
. 2
class ImagekA | 
| 3 |   | cvv 2860 | 
. . . 4
class V | 
| 4 | 3, 3 | cxpk 4175 | 
. . 3
class (V ×k
V) | 
| 5 |   | cssetk 4184 | 
. . . . . 6
class  Sk | 
| 6 | 5 | cins2k 4177 | 
. . . . 5
class  Ins2k Sk | 
| 7 | 1 | csik 4182 | 
. . . . . . . 8
class  SIk A | 
| 8 | 7 | ccnvk 4176 | 
. . . . . . 7
class ◡k SIk A | 
| 9 | 5, 8 | ccomk 4181 | 
. . . . . 6
class ( Sk ∘k ◡k SIk A) | 
| 10 | 9 | cins3k 4178 | 
. . . . 5
class  Ins3k ( Sk ∘k ◡k SIk A) | 
| 11 | 6, 10 | csymdif 3210 | 
. . . 4
class ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) | 
| 12 |   | c1c 4135 | 
. . . . . 6
class 1c | 
| 13 | 12 | cpw1 4136 | 
. . . . 5
class ℘11c | 
| 14 | 13 | cpw1 4136 | 
. . . 4
class ℘1℘11c | 
| 15 | 11, 14 | cimak 4180 | 
. . 3
class (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c) | 
| 16 | 4, 15 | cdif 3207 | 
. 2
class ((V ×k V)
∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c)) | 
| 17 | 2, 16 | wceq 1642 | 
1
wff ImagekA = ((V ×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c)) |