Detailed syntax breakdown of Definition df-imagek
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class A |
2 | 1 | cimagek 4183 |
. 2
class ImagekA |
3 | | cvv 2860 |
. . . 4
class V |
4 | 3, 3 | cxpk 4175 |
. . 3
class (V ×k
V) |
5 | | cssetk 4184 |
. . . . . 6
class Sk |
6 | 5 | cins2k 4177 |
. . . . 5
class Ins2k Sk |
7 | 1 | csik 4182 |
. . . . . . . 8
class SIk A |
8 | 7 | ccnvk 4176 |
. . . . . . 7
class ◡k SIk A |
9 | 5, 8 | ccomk 4181 |
. . . . . 6
class ( Sk ∘k ◡k SIk A) |
10 | 9 | cins3k 4178 |
. . . . 5
class Ins3k ( Sk ∘k ◡k SIk A) |
11 | 6, 10 | csymdif 3210 |
. . . 4
class ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) |
12 | | c1c 4135 |
. . . . . 6
class 1c |
13 | 12 | cpw1 4136 |
. . . . 5
class ℘11c |
14 | 13 | cpw1 4136 |
. . . 4
class ℘1℘11c |
15 | 11, 14 | cimak 4180 |
. . 3
class (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c) |
16 | 4, 15 | cdif 3207 |
. 2
class ((V ×k V)
∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c)) |
17 | 2, 16 | wceq 1642 |
1
wff ImagekA = ((V ×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c)) |