NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkelidkg GIF version

Theorem opkelidkg 4275
Description: Membership in the Kuratowski identity relationship. (Contributed by SF, 13-Jan-2015.)
Assertion
Ref Expression
opkelidkg ((A V B W) → (⟪A, B IkA = B))

Proof of Theorem opkelidkg
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-idk 4196 . 2 Ik = {z xy(z = ⟪x, y x = y)}
2 eqeq1 2359 . 2 (x = A → (x = yA = y))
3 eqeq2 2362 . 2 (y = B → (A = yA = B))
41, 2, 3opkelopkabg 4246 1 ((A V B W) → (⟪A, B IkA = B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  copk 4058   Ik cidk 4185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-idk 4196
This theorem is referenced by:  dfidk2  4314  nnsucelrlem1  4425  nndisjeq  4430  eqtfinrelk  4487  oddfinex  4505  evenodddisjlem1  4516  dfphi2  4570
  Copyright terms: Public domain W3C validator