New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  idkssvvk GIF version

Theorem idkssvvk 4281
 Description: The Kuratowski identity relationship is a Kuratowski relationship. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
idkssvvk Ik (V ×k V)

Proof of Theorem idkssvvk
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-idk 4195 . 2 Ik = {x yz(x = ⟪y, z y = z)}
21opkabssvvki 4209 1 Ik (V ×k V)
 Colors of variables: wff setvar class Syntax hints:  Vcvv 2859   ⊆ wss 3257   ×k cxpk 4174   Ik cidk 4184 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-ss 3259  df-nul 3551  df-sn 3741  df-pr 3742  df-opk 4058  df-xpk 4185  df-idk 4195 This theorem is referenced by:  dfidk2  4313
 Copyright terms: Public domain W3C validator