Detailed syntax breakdown of Definition df-muc
| Step | Hyp | Ref
| Expression |
| 1 | | cmuc 6093 |
. 2
class
·c |
| 2 | | vm |
. . 3
setvar m |
| 3 | | vn |
. . 3
setvar n |
| 4 | | cncs 6089 |
. . 3
class NC |
| 5 | | va |
. . . . . . . 8
setvar a |
| 6 | 5 | cv 1641 |
. . . . . . 7
class a |
| 7 | | vb |
. . . . . . . . 9
setvar b |
| 8 | 7 | cv 1641 |
. . . . . . . 8
class b |
| 9 | | vg |
. . . . . . . . 9
setvar g |
| 10 | 9 | cv 1641 |
. . . . . . . 8
class g |
| 11 | 8, 10 | cxp 4771 |
. . . . . . 7
class (b × g) |
| 12 | | cen 6029 |
. . . . . . 7
class ≈ |
| 13 | 6, 11, 12 | wbr 4640 |
. . . . . 6
wff a
≈ (b × g) |
| 14 | 3 | cv 1641 |
. . . . . 6
class n |
| 15 | 13, 9, 14 | wrex 2616 |
. . . . 5
wff ∃g ∈ n a ≈ (b
× g) |
| 16 | 2 | cv 1641 |
. . . . 5
class m |
| 17 | 15, 7, 16 | wrex 2616 |
. . . 4
wff ∃b ∈ m ∃g ∈ n a ≈ (b
× g) |
| 18 | 17, 5 | cab 2339 |
. . 3
class {a ∣ ∃b ∈ m ∃g ∈ n a ≈ (b
× g)} |
| 19 | 2, 3, 4, 4, 18 | cmpt2 5654 |
. 2
class (m ∈ NC , n ∈ NC ↦ {a ∣ ∃b ∈ m ∃g ∈ n a ≈
(b × g)}) |
| 20 | 1, 19 | wceq 1642 |
1
wff ·c =
(m ∈
NC , n ∈ NC ↦ {a ∣ ∃b ∈ m ∃g ∈ n a ≈
(b × g)}) |