New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-tc | GIF version |
Description: Define the type-raising operation on a cardinal number. This is the unique cardinal containing the unit power classes of the elements of the given cardinal. Definition adapted from [Rosser] p. 528. (Contributed by Scott Fenton, 24-Feb-2015.) |
Ref | Expression |
---|---|
df-tc | ⊢ Tc A = (℩b(b ∈ NC ∧ ∃x ∈ A b = Nc ℘1x)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | 1 | ctc 6094 | . 2 class Tc A |
3 | vb | . . . . . 6 setvar b | |
4 | 3 | cv 1641 | . . . . 5 class b |
5 | cncs 6089 | . . . . 5 class NC | |
6 | 4, 5 | wcel 1710 | . . . 4 wff b ∈ NC |
7 | vx | . . . . . . . . 9 setvar x | |
8 | 7 | cv 1641 | . . . . . . . 8 class x |
9 | 8 | cpw1 4136 | . . . . . . 7 class ℘1x |
10 | 9 | cnc 6092 | . . . . . 6 class Nc ℘1x |
11 | 4, 10 | wceq 1642 | . . . . 5 wff b = Nc ℘1x |
12 | 11, 7, 1 | wrex 2616 | . . . 4 wff ∃x ∈ A b = Nc ℘1x |
13 | 6, 12 | wa 358 | . . 3 wff (b ∈ NC ∧ ∃x ∈ A b = Nc ℘1x) |
14 | 13, 3 | cio 4338 | . 2 class (℩b(b ∈ NC ∧ ∃x ∈ A b = Nc ℘1x)) |
15 | 2, 14 | wceq 1642 | 1 wff Tc A = (℩b(b ∈ NC ∧ ∃x ∈ A b = Nc ℘1x)) |
Colors of variables: wff setvar class |
This definition is referenced by: tcex 6158 tceq 6159 tccl 6161 eqtc 6162 tcfnex 6245 |
Copyright terms: Public domain | W3C validator |