| Step | Hyp | Ref
| Expression |
| 1 | | elima 4755 |
. . . . 5
⊢ (a ∈ ((ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) “ N) “ M)
↔ ∃b ∈ M b(ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) “ N)a) |
| 2 | | df-br 4641 |
. . . . . . 7
⊢ (b(ran ( Ins4 ran (
Cross ⊗ (2nd ⊗
1st )) ∩ Ins2 Ins2 ◡ ≈ )
“ N)a ↔ 〈b, a〉 ∈ (ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) “ N)) |
| 3 | | elima 4755 |
. . . . . . 7
⊢ (〈b, a〉 ∈ (ran ( Ins4 ran (
Cross ⊗ (2nd ⊗
1st )) ∩ Ins2 Ins2 ◡ ≈ )
“ N) ↔ ∃g ∈ N gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ∩ Ins2 Ins2
◡ ≈ )〈b, a〉) |
| 4 | | df-br 4641 |
. . . . . . . . 9
⊢ (gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ∩ Ins2 Ins2
◡ ≈ )〈b, a〉 ↔ 〈g, 〈b, a〉〉 ∈ ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ )) |
| 5 | | elrn2 4898 |
. . . . . . . . . 10
⊢ (〈g, 〈b, a〉〉 ∈ ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) ↔ ∃c〈c, 〈g, 〈b, a〉〉〉 ∈ ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ∩ Ins2 Ins2
◡ ≈ )) |
| 6 | | elin 3220 |
. . . . . . . . . . . 12
⊢ (〈c, 〈g, 〈b, a〉〉〉 ∈ ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ∩ Ins2 Ins2
◡ ≈ ) ↔ (〈c, 〈g, 〈b, a〉〉〉 ∈ Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ∧ 〈c, 〈g, 〈b, a〉〉〉 ∈ Ins2 Ins2 ◡ ≈
)) |
| 7 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ a ∈
V |
| 8 | 7 | oqelins4 5795 |
. . . . . . . . . . . . . 14
⊢ (〈c, 〈g, 〈b, a〉〉〉 ∈ Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ↔ 〈c, 〈g, b〉〉 ∈ ran ( Cross ⊗
(2nd ⊗ 1st ))) |
| 9 | | elrn 4897 |
. . . . . . . . . . . . . . 15
⊢ (〈c, 〈g, b〉〉 ∈ ran ( Cross ⊗ (2nd ⊗ 1st
)) ↔ ∃a a( Cross ⊗ (2nd ⊗ 1st
))〈c,
〈g,
b〉〉) |
| 10 | | trtxp 5782 |
. . . . . . . . . . . . . . . . 17
⊢ (a( Cross ⊗
(2nd ⊗ 1st ))〈c, 〈g, b〉〉 ↔ (a
Cross c ∧ a(2nd ⊗ 1st )〈g, b〉)) |
| 11 | | trtxp 5782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (a(2nd ⊗ 1st )〈g, b〉 ↔
(a2nd g ∧ a1st b)) |
| 12 | | ancom 437 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((a2nd g ∧ a1st b) ↔ (a1st b ∧ a2nd g)) |
| 13 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . 20
⊢ b ∈
V |
| 14 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . 20
⊢ g ∈
V |
| 15 | 13, 14 | op1st2nd 5791 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((a1st b ∧ a2nd g) ↔ a =
〈b,
g〉) |
| 16 | 11, 12, 15 | 3bitri 262 |
. . . . . . . . . . . . . . . . . 18
⊢ (a(2nd ⊗ 1st )〈g, b〉 ↔ a = 〈b, g〉) |
| 17 | 16 | anbi2i 675 |
. . . . . . . . . . . . . . . . 17
⊢ ((a Cross c ∧ a(2nd ⊗ 1st )〈g, b〉) ↔
(a Cross
c ∧
a = 〈b, g〉)) |
| 18 | | ancom 437 |
. . . . . . . . . . . . . . . . 17
⊢ ((a Cross c ∧ a = 〈b, g〉) ↔ (a =
〈b,
g〉 ∧ a Cross c)) |
| 19 | 10, 17, 18 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (a( Cross ⊗
(2nd ⊗ 1st ))〈c, 〈g, b〉〉 ↔ (a =
〈b,
g〉 ∧ a Cross c)) |
| 20 | 19 | exbii 1582 |
. . . . . . . . . . . . . . 15
⊢ (∃a a( Cross ⊗
(2nd ⊗ 1st ))〈c, 〈g, b〉〉 ↔ ∃a(a = 〈b, g〉 ∧ a Cross c)) |
| 21 | 13, 14 | opex 4589 |
. . . . . . . . . . . . . . . 16
⊢ 〈b, g〉 ∈ V |
| 22 | | breq1 4643 |
. . . . . . . . . . . . . . . 16
⊢ (a = 〈b, g〉 → (a
Cross c ↔
〈b,
g〉 Cross c)) |
| 23 | 21, 22 | ceqsexv 2895 |
. . . . . . . . . . . . . . 15
⊢ (∃a(a = 〈b, g〉 ∧ a Cross c) ↔ 〈b, g〉 Cross c) |
| 24 | 9, 20, 23 | 3bitri 262 |
. . . . . . . . . . . . . 14
⊢ (〈c, 〈g, b〉〉 ∈ ran ( Cross ⊗ (2nd ⊗ 1st
)) ↔ 〈b, g〉 Cross c) |
| 25 | 13, 14 | brcross 5850 |
. . . . . . . . . . . . . 14
⊢ (〈b, g〉 Cross c ↔
c = (b
× g)) |
| 26 | 8, 24, 25 | 3bitri 262 |
. . . . . . . . . . . . 13
⊢ (〈c, 〈g, 〈b, a〉〉〉 ∈ Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ↔ c = (b × g)) |
| 27 | 14 | otelins2 5792 |
. . . . . . . . . . . . . 14
⊢ (〈c, 〈g, 〈b, a〉〉〉 ∈ Ins2 Ins2 ◡ ≈
↔ 〈c, 〈b, a〉〉 ∈ Ins2 ◡ ≈ ) |
| 28 | 13 | otelins2 5792 |
. . . . . . . . . . . . . 14
⊢ (〈c, 〈b, a〉〉 ∈ Ins2 ◡ ≈
↔ 〈c, a〉 ∈ ◡ ≈ ) |
| 29 | | df-br 4641 |
. . . . . . . . . . . . . . 15
⊢ (c◡ ≈
a ↔ 〈c, a〉 ∈ ◡ ≈
) |
| 30 | | brcnv 4893 |
. . . . . . . . . . . . . . 15
⊢ (c◡ ≈
a ↔ a ≈ c) |
| 31 | 29, 30 | bitr3i 242 |
. . . . . . . . . . . . . 14
⊢ (〈c, a〉 ∈ ◡ ≈
↔ a ≈ c) |
| 32 | 27, 28, 31 | 3bitri 262 |
. . . . . . . . . . . . 13
⊢ (〈c, 〈g, 〈b, a〉〉〉 ∈ Ins2 Ins2 ◡ ≈
↔ a ≈ c) |
| 33 | 26, 32 | anbi12i 678 |
. . . . . . . . . . . 12
⊢ ((〈c, 〈g, 〈b, a〉〉〉 ∈ Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ∧ 〈c, 〈g, 〈b, a〉〉〉 ∈ Ins2 Ins2 ◡ ≈ )
↔ (c = (b × g)
∧ a
≈ c)) |
| 34 | 6, 33 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈c, 〈g, 〈b, a〉〉〉 ∈ ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ∩ Ins2 Ins2
◡ ≈ ) ↔ (c = (b ×
g) ∧
a ≈ c)) |
| 35 | 34 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃c〈c, 〈g, 〈b, a〉〉〉 ∈ ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ∩ Ins2 Ins2
◡ ≈ ) ↔ ∃c(c = (b ×
g) ∧
a ≈ c)) |
| 36 | 13, 14 | xpex 5116 |
. . . . . . . . . . 11
⊢ (b × g)
∈ V |
| 37 | | breq2 4644 |
. . . . . . . . . . 11
⊢ (c = (b ×
g) → (a ≈ c
↔ a ≈ (b × g))) |
| 38 | 36, 37 | ceqsexv 2895 |
. . . . . . . . . 10
⊢ (∃c(c = (b ×
g) ∧
a ≈ c) ↔ a
≈ (b × g)) |
| 39 | 5, 35, 38 | 3bitri 262 |
. . . . . . . . 9
⊢ (〈g, 〈b, a〉〉 ∈ ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) ↔ a ≈ (b
× g)) |
| 40 | 4, 39 | bitri 240 |
. . . . . . . 8
⊢ (gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ∩ Ins2 Ins2
◡ ≈ )〈b, a〉 ↔ a ≈ (b
× g)) |
| 41 | 40 | rexbii 2640 |
. . . . . . 7
⊢ (∃g ∈ N gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st
)) ∩ Ins2 Ins2
◡ ≈ )〈b, a〉 ↔ ∃g ∈ N a ≈ (b
× g)) |
| 42 | 2, 3, 41 | 3bitri 262 |
. . . . . 6
⊢ (b(ran ( Ins4 ran (
Cross ⊗ (2nd ⊗
1st )) ∩ Ins2 Ins2 ◡ ≈ )
“ N)a ↔ ∃g ∈ N a ≈ (b
× g)) |
| 43 | 42 | rexbii 2640 |
. . . . 5
⊢ (∃b ∈ M b(ran ( Ins4 ran (
Cross ⊗ (2nd ⊗
1st )) ∩ Ins2 Ins2 ◡ ≈ )
“ N)a ↔ ∃b ∈ M ∃g ∈ N a ≈ (b
× g)) |
| 44 | 1, 43 | bitri 240 |
. . . 4
⊢ (a ∈ ((ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) “ N) “ M)
↔ ∃b ∈ M ∃g ∈ N a ≈
(b × g)) |
| 45 | 44 | eqabi 2465 |
. . 3
⊢ ((ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) “ N) “ M) =
{a ∣
∃b ∈ M ∃g ∈ N a ≈ (b
× g)} |
| 46 | | crossex 5851 |
. . . . . . . . . . 11
⊢ Cross ∈
V |
| 47 | | 2ndex 5113 |
. . . . . . . . . . . 12
⊢ 2nd
∈ V |
| 48 | | 1stex 4740 |
. . . . . . . . . . . 12
⊢ 1st
∈ V |
| 49 | 47, 48 | txpex 5786 |
. . . . . . . . . . 11
⊢ (2nd
⊗ 1st ) ∈
V |
| 50 | 46, 49 | txpex 5786 |
. . . . . . . . . 10
⊢ ( Cross ⊗ (2nd ⊗ 1st
)) ∈ V |
| 51 | 50 | rnex 5108 |
. . . . . . . . 9
⊢ ran ( Cross ⊗ (2nd ⊗ 1st
)) ∈ V |
| 52 | 51 | ins4ex 5800 |
. . . . . . . 8
⊢ Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∈
V |
| 53 | | enex 6032 |
. . . . . . . . . . 11
⊢ ≈ ∈ V |
| 54 | 53 | cnvex 5103 |
. . . . . . . . . 10
⊢ ◡ ≈ ∈
V |
| 55 | 54 | ins2ex 5798 |
. . . . . . . . 9
⊢ Ins2 ◡ ≈
∈ V |
| 56 | 55 | ins2ex 5798 |
. . . . . . . 8
⊢ Ins2 Ins2 ◡ ≈ ∈
V |
| 57 | 52, 56 | inex 4106 |
. . . . . . 7
⊢ ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) ∈ V |
| 58 | 57 | rnex 5108 |
. . . . . 6
⊢ ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) ∈ V |
| 59 | | imaexg 4747 |
. . . . . 6
⊢ ((ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) ∈ V ∧ N ∈ NC ) → (ran ( Ins4 ran
( Cross ⊗ (2nd ⊗
1st )) ∩ Ins2 Ins2 ◡ ≈ )
“ N) ∈ V) |
| 60 | 58, 59 | mpan 651 |
. . . . 5
⊢ (N ∈ NC → (ran ( Ins4 ran (
Cross ⊗ (2nd ⊗
1st )) ∩ Ins2 Ins2 ◡ ≈ )
“ N) ∈ V) |
| 61 | | imaexg 4747 |
. . . . 5
⊢ (((ran ( Ins4 ran ( Cross ⊗
(2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) “ N) ∈ V ∧ M ∈ NC ) → ((ran (
Ins4 ran ( Cross
⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ◡ ≈ ) “ N) “ M)
∈ V) |
| 62 | 60, 61 | sylan 457 |
. . . 4
⊢ ((N ∈ NC ∧ M ∈ NC ) → ((ran ( Ins4
ran ( Cross ⊗ (2nd ⊗
1st )) ∩ Ins2 Ins2 ◡ ≈ )
“ N) “ M) ∈
V) |
| 63 | 62 | ancoms 439 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → ((ran ( Ins4
ran ( Cross ⊗ (2nd ⊗
1st )) ∩ Ins2 Ins2 ◡ ≈ )
“ N) “ M) ∈
V) |
| 64 | 45, 63 | syl5eqelr 2438 |
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) → {a ∣ ∃b ∈ M ∃g ∈ N a ≈
(b × g)} ∈
V) |
| 65 | | rexeq 2809 |
. . . 4
⊢ (m = M →
(∃b
∈ m ∃g ∈ n a ≈ (b
× g) ↔ ∃b ∈ M ∃g ∈ n a ≈ (b
× g))) |
| 66 | 65 | abbidv 2468 |
. . 3
⊢ (m = M →
{a ∣
∃b ∈ m ∃g ∈ n a ≈ (b
× g)} = {a ∣ ∃b ∈ M ∃g ∈ n a ≈ (b
× g)}) |
| 67 | | rexeq 2809 |
. . . . 5
⊢ (n = N →
(∃g
∈ n
a ≈ (b × g)
↔ ∃g ∈ N a ≈
(b × g))) |
| 68 | 67 | rexbidv 2636 |
. . . 4
⊢ (n = N →
(∃b
∈ M ∃g ∈ n a ≈ (b
× g) ↔ ∃b ∈ M ∃g ∈ N a ≈ (b
× g))) |
| 69 | 68 | abbidv 2468 |
. . 3
⊢ (n = N →
{a ∣
∃b ∈ M ∃g ∈ n a ≈ (b
× g)} = {a ∣ ∃b ∈ M ∃g ∈ N a ≈ (b
× g)}) |
| 70 | | df-muc 6103 |
. . 3
⊢
·c = (m ∈ NC , n ∈ NC ↦ {a ∣ ∃b ∈ m ∃g ∈ n a ≈ (b
× g)}) |
| 71 | 66, 69, 70 | ovmpt2g 5716 |
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ∧ {a ∣ ∃b ∈ M ∃g ∈ N a ≈ (b
× g)} ∈ V) → (M
·c N) = {a ∣ ∃b ∈ M ∃g ∈ N a ≈ (b
× g)}) |
| 72 | 64, 71 | mpd3an3 1278 |
1
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
·c N) = {a ∣ ∃b ∈ M ∃g ∈ N a ≈ (b
× g)}) |