NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ovmuc GIF version

Theorem ovmuc 6131
Description: The value of cardinal multiplication. (Contributed by SF, 10-Mar-2015.)
Assertion
Ref Expression
ovmuc ((M NC N NC ) → (M ·c N) = {a b M g N a ≈ (b × g)})
Distinct variable groups:   a,b,g   M,a,b   N,a,b,g
Allowed substitution hint:   M(g)

Proof of Theorem ovmuc
Dummy variables c m n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elima 4755 . . . . 5 (a ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) ↔ b M b(ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N)a)
2 df-br 4641 . . . . . . 7 (b(ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N)ab, a (ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N))
3 elima 4755 . . . . . . 7 (b, a (ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) ↔ g N gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ )b, a)
4 df-br 4641 . . . . . . . . 9 (gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ )b, ag, b, a ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ))
5 elrn2 4898 . . . . . . . . . 10 (g, b, a ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) ↔ cc, g, b, a ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ))
6 elin 3220 . . . . . . . . . . . 12 (c, g, b, a ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) ↔ (c, g, b, a Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) c, g, b, a Ins2 Ins2 ≈ ))
7 vex 2863 . . . . . . . . . . . . . . 15 a V
87oqelins4 5795 . . . . . . . . . . . . . 14 (c, g, b, a Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ↔ c, g, b ran ( Cross ⊗ (2nd ⊗ 1st )))
9 elrn 4897 . . . . . . . . . . . . . . 15 (c, g, b ran ( Cross ⊗ (2nd ⊗ 1st )) ↔ a a( Cross ⊗ (2nd ⊗ 1st ))c, g, b)
10 trtxp 5782 . . . . . . . . . . . . . . . . 17 (a( Cross ⊗ (2nd ⊗ 1st ))c, g, b ↔ (a Cross c a(2nd ⊗ 1st )g, b))
11 trtxp 5782 . . . . . . . . . . . . . . . . . . 19 (a(2nd ⊗ 1st )g, b ↔ (a2nd g a1st b))
12 ancom 437 . . . . . . . . . . . . . . . . . . 19 ((a2nd g a1st b) ↔ (a1st b a2nd g))
13 vex 2863 . . . . . . . . . . . . . . . . . . . 20 b V
14 vex 2863 . . . . . . . . . . . . . . . . . . . 20 g V
1513, 14op1st2nd 5791 . . . . . . . . . . . . . . . . . . 19 ((a1st b a2nd g) ↔ a = b, g)
1611, 12, 153bitri 262 . . . . . . . . . . . . . . . . . 18 (a(2nd ⊗ 1st )g, ba = b, g)
1716anbi2i 675 . . . . . . . . . . . . . . . . 17 ((a Cross c a(2nd ⊗ 1st )g, b) ↔ (a Cross c a = b, g))
18 ancom 437 . . . . . . . . . . . . . . . . 17 ((a Cross c a = b, g) ↔ (a = b, g a Cross c))
1910, 17, 183bitri 262 . . . . . . . . . . . . . . . 16 (a( Cross ⊗ (2nd ⊗ 1st ))c, g, b ↔ (a = b, g a Cross c))
2019exbii 1582 . . . . . . . . . . . . . . 15 (a a( Cross ⊗ (2nd ⊗ 1st ))c, g, ba(a = b, g a Cross c))
2113, 14opex 4589 . . . . . . . . . . . . . . . 16 b, g V
22 breq1 4643 . . . . . . . . . . . . . . . 16 (a = b, g → (a Cross cb, g Cross c))
2321, 22ceqsexv 2895 . . . . . . . . . . . . . . 15 (a(a = b, g a Cross c) ↔ b, g Cross c)
249, 20, 233bitri 262 . . . . . . . . . . . . . 14 (c, g, b ran ( Cross ⊗ (2nd ⊗ 1st )) ↔ b, g Cross c)
2513, 14brcross 5850 . . . . . . . . . . . . . 14 (b, g Cross cc = (b × g))
268, 24, 253bitri 262 . . . . . . . . . . . . 13 (c, g, b, a Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ↔ c = (b × g))
2714otelins2 5792 . . . . . . . . . . . . . 14 (c, g, b, a Ins2 Ins2 ≈ ↔ c, b, a Ins2 ≈ )
2813otelins2 5792 . . . . . . . . . . . . . 14 (c, b, a Ins2 ≈ ↔ c, a ≈ )
29 df-br 4641 . . . . . . . . . . . . . . 15 (cac, a ≈ )
30 brcnv 4893 . . . . . . . . . . . . . . 15 (caac)
3129, 30bitr3i 242 . . . . . . . . . . . . . 14 (c, a ≈ ↔ ac)
3227, 28, 313bitri 262 . . . . . . . . . . . . 13 (c, g, b, a Ins2 Ins2 ≈ ↔ ac)
3326, 32anbi12i 678 . . . . . . . . . . . 12 ((c, g, b, a Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) c, g, b, a Ins2 Ins2 ≈ ) ↔ (c = (b × g) ac))
346, 33bitri 240 . . . . . . . . . . 11 (c, g, b, a ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) ↔ (c = (b × g) ac))
3534exbii 1582 . . . . . . . . . 10 (cc, g, b, a ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) ↔ c(c = (b × g) ac))
3613, 14xpex 5116 . . . . . . . . . . 11 (b × g) V
37 breq2 4644 . . . . . . . . . . 11 (c = (b × g) → (aca ≈ (b × g)))
3836, 37ceqsexv 2895 . . . . . . . . . 10 (c(c = (b × g) ac) ↔ a ≈ (b × g))
395, 35, 383bitri 262 . . . . . . . . 9 (g, b, a ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) ↔ a ≈ (b × g))
404, 39bitri 240 . . . . . . . 8 (gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ )b, aa ≈ (b × g))
4140rexbii 2640 . . . . . . 7 (g N gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ )b, ag N a ≈ (b × g))
422, 3, 413bitri 262 . . . . . 6 (b(ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N)ag N a ≈ (b × g))
4342rexbii 2640 . . . . 5 (b M b(ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N)ab M g N a ≈ (b × g))
441, 43bitri 240 . . . 4 (a ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) ↔ b M g N a ≈ (b × g))
4544abbi2i 2465 . . 3 ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) = {a b M g N a ≈ (b × g)}
46 crossex 5851 . . . . . . . . . . 11 Cross V
47 2ndex 5113 . . . . . . . . . . . 12 2nd V
48 1stex 4740 . . . . . . . . . . . 12 1st V
4947, 48txpex 5786 . . . . . . . . . . 11 (2nd ⊗ 1st ) V
5046, 49txpex 5786 . . . . . . . . . 10 ( Cross ⊗ (2nd ⊗ 1st )) V
5150rnex 5108 . . . . . . . . 9 ran ( Cross ⊗ (2nd ⊗ 1st )) V
5251ins4ex 5800 . . . . . . . 8 Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) V
53 enex 6032 . . . . . . . . . . 11 V
5453cnvex 5103 . . . . . . . . . 10 V
5554ins2ex 5798 . . . . . . . . 9 Ins2 V
5655ins2ex 5798 . . . . . . . 8 Ins2 Ins2 V
5752, 56inex 4106 . . . . . . 7 ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) V
5857rnex 5108 . . . . . 6 ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) V
59 imaexg 4747 . . . . . 6 ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) V N NC ) → (ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) V)
6058, 59mpan 651 . . . . 5 (N NC → (ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) V)
61 imaexg 4747 . . . . 5 (((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) V M NC ) → ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) V)
6260, 61sylan 457 . . . 4 ((N NC M NC ) → ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) V)
6362ancoms 439 . . 3 ((M NC N NC ) → ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) V)
6445, 63syl5eqelr 2438 . 2 ((M NC N NC ) → {a b M g N a ≈ (b × g)} V)
65 rexeq 2809 . . . 4 (m = M → (b m g n a ≈ (b × g) ↔ b M g n a ≈ (b × g)))
6665abbidv 2468 . . 3 (m = M → {a b m g n a ≈ (b × g)} = {a b M g n a ≈ (b × g)})
67 rexeq 2809 . . . . 5 (n = N → (g n a ≈ (b × g) ↔ g N a ≈ (b × g)))
6867rexbidv 2636 . . . 4 (n = N → (b M g n a ≈ (b × g) ↔ b M g N a ≈ (b × g)))
6968abbidv 2468 . . 3 (n = N → {a b M g n a ≈ (b × g)} = {a b M g N a ≈ (b × g)})
70 df-muc 6103 . . 3 ·c = (m NC , n NC {a b m g n a ≈ (b × g)})
7166, 69, 70ovmpt2g 5716 . 2 ((M NC N NC {a b M g N a ≈ (b × g)} V) → (M ·c N) = {a b M g N a ≈ (b × g)})
7264, 71mpd3an3 1278 1 ((M NC N NC ) → (M ·c N) = {a b M g N a ≈ (b × g)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860  cin 3209  cop 4562   class class class wbr 4640  1st c1st 4718  cima 4723   × cxp 4771  ccnv 4772  ran crn 4774  2nd c2nd 4784  (class class class)co 5526  ctxp 5736   Ins2 cins2 5750   Ins4 cins4 5756   Cross ccross 5764  cen 6029   NC cncs 6089   ·c cmuc 6093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-csb 3138  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-cross 5765  df-en 6030  df-muc 6103
This theorem is referenced by:  mucnc  6132
  Copyright terms: Public domain W3C validator