NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ovmuc GIF version

Theorem ovmuc 6130
Description: The value of cardinal multiplication. (Contributed by SF, 10-Mar-2015.)
Assertion
Ref Expression
ovmuc ((M NC N NC ) → (M ·c N) = {a b M g N a ≈ (b × g)})
Distinct variable groups:   a,b,g   M,a,b   N,a,b,g
Allowed substitution hint:   M(g)

Proof of Theorem ovmuc
Dummy variables c m n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elima 4754 . . . . 5 (a ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) ↔ b M b(ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N)a)
2 df-br 4640 . . . . . . 7 (b(ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N)ab, a (ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N))
3 elima 4754 . . . . . . 7 (b, a (ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) ↔ g N gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ )b, a)
4 df-br 4640 . . . . . . . . 9 (gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ )b, ag, b, a ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ))
5 elrn2 4897 . . . . . . . . . 10 (g, b, a ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) ↔ cc, g, b, a ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ))
6 elin 3219 . . . . . . . . . . . 12 (c, g, b, a ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) ↔ (c, g, b, a Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) c, g, b, a Ins2 Ins2 ≈ ))
7 vex 2862 . . . . . . . . . . . . . . 15 a V
87oqelins4 5794 . . . . . . . . . . . . . 14 (c, g, b, a Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ↔ c, g, b ran ( Cross ⊗ (2nd ⊗ 1st )))
9 elrn 4896 . . . . . . . . . . . . . . 15 (c, g, b ran ( Cross ⊗ (2nd ⊗ 1st )) ↔ a a( Cross ⊗ (2nd ⊗ 1st ))c, g, b)
10 trtxp 5781 . . . . . . . . . . . . . . . . 17 (a( Cross ⊗ (2nd ⊗ 1st ))c, g, b ↔ (a Cross c a(2nd ⊗ 1st )g, b))
11 trtxp 5781 . . . . . . . . . . . . . . . . . . 19 (a(2nd ⊗ 1st )g, b ↔ (a2nd g a1st b))
12 ancom 437 . . . . . . . . . . . . . . . . . . 19 ((a2nd g a1st b) ↔ (a1st b a2nd g))
13 vex 2862 . . . . . . . . . . . . . . . . . . . 20 b V
14 vex 2862 . . . . . . . . . . . . . . . . . . . 20 g V
1513, 14op1st2nd 5790 . . . . . . . . . . . . . . . . . . 19 ((a1st b a2nd g) ↔ a = b, g)
1611, 12, 153bitri 262 . . . . . . . . . . . . . . . . . 18 (a(2nd ⊗ 1st )g, ba = b, g)
1716anbi2i 675 . . . . . . . . . . . . . . . . 17 ((a Cross c a(2nd ⊗ 1st )g, b) ↔ (a Cross c a = b, g))
18 ancom 437 . . . . . . . . . . . . . . . . 17 ((a Cross c a = b, g) ↔ (a = b, g a Cross c))
1910, 17, 183bitri 262 . . . . . . . . . . . . . . . 16 (a( Cross ⊗ (2nd ⊗ 1st ))c, g, b ↔ (a = b, g a Cross c))
2019exbii 1582 . . . . . . . . . . . . . . 15 (a a( Cross ⊗ (2nd ⊗ 1st ))c, g, ba(a = b, g a Cross c))
2113, 14opex 4588 . . . . . . . . . . . . . . . 16 b, g V
22 breq1 4642 . . . . . . . . . . . . . . . 16 (a = b, g → (a Cross cb, g Cross c))
2321, 22ceqsexv 2894 . . . . . . . . . . . . . . 15 (a(a = b, g a Cross c) ↔ b, g Cross c)
249, 20, 233bitri 262 . . . . . . . . . . . . . 14 (c, g, b ran ( Cross ⊗ (2nd ⊗ 1st )) ↔ b, g Cross c)
2513, 14brcross 5849 . . . . . . . . . . . . . 14 (b, g Cross cc = (b × g))
268, 24, 253bitri 262 . . . . . . . . . . . . 13 (c, g, b, a Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ↔ c = (b × g))
2714otelins2 5791 . . . . . . . . . . . . . 14 (c, g, b, a Ins2 Ins2 ≈ ↔ c, b, a Ins2 ≈ )
2813otelins2 5791 . . . . . . . . . . . . . 14 (c, b, a Ins2 ≈ ↔ c, a ≈ )
29 df-br 4640 . . . . . . . . . . . . . . 15 (cac, a ≈ )
30 brcnv 4892 . . . . . . . . . . . . . . 15 (caac)
3129, 30bitr3i 242 . . . . . . . . . . . . . 14 (c, a ≈ ↔ ac)
3227, 28, 313bitri 262 . . . . . . . . . . . . 13 (c, g, b, a Ins2 Ins2 ≈ ↔ ac)
3326, 32anbi12i 678 . . . . . . . . . . . 12 ((c, g, b, a Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) c, g, b, a Ins2 Ins2 ≈ ) ↔ (c = (b × g) ac))
346, 33bitri 240 . . . . . . . . . . 11 (c, g, b, a ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) ↔ (c = (b × g) ac))
3534exbii 1582 . . . . . . . . . 10 (cc, g, b, a ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) ↔ c(c = (b × g) ac))
3613, 14xpex 5115 . . . . . . . . . . 11 (b × g) V
37 breq2 4643 . . . . . . . . . . 11 (c = (b × g) → (aca ≈ (b × g)))
3836, 37ceqsexv 2894 . . . . . . . . . 10 (c(c = (b × g) ac) ↔ a ≈ (b × g))
395, 35, 383bitri 262 . . . . . . . . 9 (g, b, a ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) ↔ a ≈ (b × g))
404, 39bitri 240 . . . . . . . 8 (gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ )b, aa ≈ (b × g))
4140rexbii 2639 . . . . . . 7 (g N gran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ )b, ag N a ≈ (b × g))
422, 3, 413bitri 262 . . . . . 6 (b(ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N)ag N a ≈ (b × g))
4342rexbii 2639 . . . . 5 (b M b(ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N)ab M g N a ≈ (b × g))
441, 43bitri 240 . . . 4 (a ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) ↔ b M g N a ≈ (b × g))
4544abbi2i 2464 . . 3 ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) = {a b M g N a ≈ (b × g)}
46 crossex 5850 . . . . . . . . . . 11 Cross V
47 2ndex 5112 . . . . . . . . . . . 12 2nd V
48 1stex 4739 . . . . . . . . . . . 12 1st V
4947, 48txpex 5785 . . . . . . . . . . 11 (2nd ⊗ 1st ) V
5046, 49txpex 5785 . . . . . . . . . 10 ( Cross ⊗ (2nd ⊗ 1st )) V
5150rnex 5107 . . . . . . . . 9 ran ( Cross ⊗ (2nd ⊗ 1st )) V
5251ins4ex 5799 . . . . . . . 8 Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) V
53 enex 6031 . . . . . . . . . . 11 V
5453cnvex 5102 . . . . . . . . . 10 V
5554ins2ex 5797 . . . . . . . . 9 Ins2 V
5655ins2ex 5797 . . . . . . . 8 Ins2 Ins2 V
5752, 56inex 4105 . . . . . . 7 ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) V
5857rnex 5107 . . . . . 6 ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) V
59 imaexg 4746 . . . . . 6 ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) V N NC ) → (ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) V)
6058, 59mpan 651 . . . . 5 (N NC → (ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) V)
61 imaexg 4746 . . . . 5 (((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) V M NC ) → ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) V)
6260, 61sylan 457 . . . 4 ((N NC M NC ) → ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) V)
6362ancoms 439 . . 3 ((M NC N NC ) → ((ran ( Ins4 ran ( Cross ⊗ (2nd ⊗ 1st )) ∩ Ins2 Ins2 ≈ ) “ N) “ M) V)
6445, 63syl5eqelr 2438 . 2 ((M NC N NC ) → {a b M g N a ≈ (b × g)} V)
65 rexeq 2808 . . . 4 (m = M → (b m g n a ≈ (b × g) ↔ b M g n a ≈ (b × g)))
6665abbidv 2467 . . 3 (m = M → {a b m g n a ≈ (b × g)} = {a b M g n a ≈ (b × g)})
67 rexeq 2808 . . . . 5 (n = N → (g n a ≈ (b × g) ↔ g N a ≈ (b × g)))
6867rexbidv 2635 . . . 4 (n = N → (b M g n a ≈ (b × g) ↔ b M g N a ≈ (b × g)))
6968abbidv 2467 . . 3 (n = N → {a b M g n a ≈ (b × g)} = {a b M g N a ≈ (b × g)})
70 df-muc 6102 . . 3 ·c = (m NC , n NC {a b m g n a ≈ (b × g)})
7166, 69, 70ovmpt2g 5715 . 2 ((M NC N NC {a b M g N a ≈ (b × g)} V) → (M ·c N) = {a b M g N a ≈ (b × g)})
7264, 71mpd3an3 1278 1 ((M NC N NC ) → (M ·c N) = {a b M g N a ≈ (b × g)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2615  Vcvv 2859  cin 3208  cop 4561   class class class wbr 4639  1st c1st 4717  cima 4722   × cxp 4770  ccnv 4771  ran crn 4773  2nd c2nd 4783  (class class class)co 5525  ctxp 5735   Ins2 cins2 5749   Ins4 cins4 5755   Cross ccross 5763  cen 6028   NC cncs 6088   ·c cmuc 6092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-csb 3137  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-iun 3971  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-swap 4724  df-sset 4725  df-co 4726  df-ima 4727  df-si 4728  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-f 4791  df-f1 4792  df-fo 4793  df-f1o 4794  df-fv 4795  df-2nd 4797  df-ov 5526  df-oprab 5528  df-mpt 5652  df-mpt2 5654  df-txp 5736  df-ins2 5750  df-ins3 5752  df-image 5754  df-ins4 5756  df-si3 5758  df-funs 5760  df-fns 5762  df-cross 5764  df-en 6029  df-muc 6102
This theorem is referenced by:  mucnc  6131
  Copyright terms: Public domain W3C validator