Step | Hyp | Ref
| Expression |
1 | | df-muc 6103 |
. . 3
⊢
·c = (m ∈ NC , n ∈ NC ↦ {a ∣ ∃b ∈ m ∃c ∈ n a ≈ (b
× c)}) |
2 | | elin 3220 |
. . . . . . . . 9
⊢ (⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) “ 1c))
↔ (⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ Ins2 Ins2 S ∧ ⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c))) |
3 | | snex 4112 |
. . . . . . . . . . . 12
⊢ {d} ∈
V |
4 | 3 | otelins2 5792 |
. . . . . . . . . . 11
⊢ (⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ Ins2 Ins2 S ↔ ⟨{c}, ⟨m, n⟩⟩ ∈ Ins2 S ) |
5 | | vex 2863 |
. . . . . . . . . . . 12
⊢ m ∈
V |
6 | 5 | otelins2 5792 |
. . . . . . . . . . 11
⊢ (⟨{c}, ⟨m, n⟩⟩ ∈ Ins2 S ↔ ⟨{c}, n⟩ ∈ S
) |
7 | | vex 2863 |
. . . . . . . . . . . 12
⊢ c ∈
V |
8 | | vex 2863 |
. . . . . . . . . . . 12
⊢ n ∈
V |
9 | 7, 8 | opelssetsn 4761 |
. . . . . . . . . . 11
⊢ (⟨{c}, n⟩ ∈ S ↔ c ∈ n) |
10 | 4, 6, 9 | 3bitri 262 |
. . . . . . . . . 10
⊢ (⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ Ins2 Ins2 S ↔ c ∈ n) |
11 | 8 | oqelins4 5795 |
. . . . . . . . . . 11
⊢ (⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c) ↔ ⟨{c}, ⟨{d}, m⟩⟩ ∈ (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c)) |
12 | | elin 3220 |
. . . . . . . . . . . . . 14
⊢ (⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) ↔ (⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ Ins2 Ins2 S ∧ ⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ ))) |
13 | | snex 4112 |
. . . . . . . . . . . . . . . . 17
⊢ {c} ∈
V |
14 | 13 | otelins2 5792 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ Ins2 Ins2 S ↔ ⟨{b}, ⟨{d}, m⟩⟩ ∈ Ins2 S ) |
15 | 3 | otelins2 5792 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{b}, ⟨{d}, m⟩⟩ ∈ Ins2 S ↔ ⟨{b}, m⟩ ∈ S
) |
16 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ b ∈
V |
17 | 16, 5 | opelssetsn 4761 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{b}, m⟩ ∈ S ↔ b ∈ m) |
18 | 14, 15, 17 | 3bitri 262 |
. . . . . . . . . . . . . . 15
⊢ (⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ Ins2 Ins2 S ↔ b ∈ m) |
19 | 5 | oqelins4 5795 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈ )
↔ ⟨{b}, ⟨{c}, {d}⟩⟩ ∈ SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) |
20 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ d ∈
V |
21 | 16, 7, 20 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{b}, ⟨{c}, {d}⟩⟩ ∈ SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈ )
↔ ⟨b, ⟨c, d⟩⟩ ∈ ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) |
22 | | elrn2 4898 |
. . . . . . . . . . . . . . . . 17
⊢ (⟨b, ⟨c, d⟩⟩ ∈ ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈ )
↔ ∃a⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) |
23 | | elin 3220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ ) ↔ (⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ Ins4 ◡ Cross ∧ ⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ Ins2 Ins2 ◡ ≈ )) |
24 | 20 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ Ins4 ◡ Cross ↔
⟨a, ⟨b, c⟩⟩ ∈ ◡ Cross
) |
25 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (a◡ Cross ⟨b, c⟩ ↔ ⟨a, ⟨b, c⟩⟩ ∈ ◡ Cross
) |
26 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (a◡ Cross ⟨b, c⟩ ↔ ⟨b, c⟩ Cross a) |
27 | 16, 7 | brcross 5850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟨b, c⟩ Cross a ↔
a = (b
× c)) |
28 | 26, 27 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (a◡ Cross ⟨b, c⟩ ↔ a =
(b × c)) |
29 | 24, 25, 28 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ Ins4 ◡ Cross ↔
a = (b
× c)) |
30 | 16 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ Ins2 Ins2 ◡ ≈
↔ ⟨a, ⟨c, d⟩⟩ ∈ Ins2 ◡ ≈ ) |
31 | 7 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟨a, ⟨c, d⟩⟩ ∈ Ins2 ◡ ≈
↔ ⟨a, d⟩ ∈ ◡ ≈ ) |
32 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (a◡ ≈
d ↔ ⟨a, d⟩ ∈ ◡ ≈
) |
33 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (a◡ ≈
d ↔ d ≈ a) |
34 | 31, 32, 33 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟨a, ⟨c, d⟩⟩ ∈ Ins2 ◡ ≈
↔ d ≈ a) |
35 | 30, 34 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ Ins2 Ins2 ◡ ≈
↔ d ≈ a) |
36 | 29, 35 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ Ins4 ◡ Cross ∧ ⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ Ins2 Ins2 ◡ ≈ ) ↔ (a = (b ×
c) ∧
d ≈ a)) |
37 | 23, 36 | bitri 240 |
. . . . . . . . . . . . . . . . . 18
⊢ (⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ ) ↔ (a = (b ×
c) ∧
d ≈ a)) |
38 | 37 | exbii 1582 |
. . . . . . . . . . . . . . . . 17
⊢ (∃a⟨a, ⟨b, ⟨c, d⟩⟩⟩ ∈ ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ ) ↔ ∃a(a = (b ×
c) ∧
d ≈ a)) |
39 | 16, 7 | xpex 5116 |
. . . . . . . . . . . . . . . . . 18
⊢ (b × c)
∈ V |
40 | | breq2 4644 |
. . . . . . . . . . . . . . . . . 18
⊢ (a = (b ×
c) → (d ≈ a
↔ d ≈ (b × c))) |
41 | 39, 40 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . 17
⊢ (∃a(a = (b ×
c) ∧
d ≈ a) ↔ d
≈ (b × c)) |
42 | 22, 38, 41 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (⟨b, ⟨c, d⟩⟩ ∈ ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈ )
↔ d ≈ (b × c)) |
43 | 19, 21, 42 | 3bitri 262 |
. . . . . . . . . . . . . . 15
⊢ (⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈ )
↔ d ≈ (b × c)) |
44 | 18, 43 | anbi12i 678 |
. . . . . . . . . . . . . 14
⊢ ((⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ Ins2 Ins2 S ∧ ⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) ↔ (b ∈ m ∧ d ≈ (b
× c))) |
45 | 12, 44 | bitri 240 |
. . . . . . . . . . . . 13
⊢ (⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) ↔ (b ∈ m ∧ d ≈ (b
× c))) |
46 | 45 | exbii 1582 |
. . . . . . . . . . . 12
⊢ (∃b⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) ↔ ∃b(b ∈ m ∧ d ≈ (b
× c))) |
47 | | elima1c 4948 |
. . . . . . . . . . . 12
⊢ (⟨{c}, ⟨{d}, m⟩⟩ ∈ (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c) ↔ ∃b⟨{b}, ⟨{c}, ⟨{d}, m⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ ))) |
48 | | df-rex 2621 |
. . . . . . . . . . . 12
⊢ (∃b ∈ m d ≈ (b
× c) ↔ ∃b(b ∈ m ∧ d ≈ (b
× c))) |
49 | 46, 47, 48 | 3bitr4i 268 |
. . . . . . . . . . 11
⊢ (⟨{c}, ⟨{d}, m⟩⟩ ∈ (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c) ↔ ∃b ∈ m d ≈ (b
× c)) |
50 | 11, 49 | bitri 240 |
. . . . . . . . . 10
⊢ (⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c) ↔ ∃b ∈ m d ≈ (b
× c)) |
51 | 10, 50 | anbi12i 678 |
. . . . . . . . 9
⊢ ((⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ Ins2 Ins2 S ∧ ⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) “ 1c))
↔ (c ∈ n ∧ ∃b ∈ m d ≈
(b × c))) |
52 | 2, 51 | bitri 240 |
. . . . . . . 8
⊢ (⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) “ 1c))
↔ (c ∈ n ∧ ∃b ∈ m d ≈
(b × c))) |
53 | 52 | exbii 1582 |
. . . . . . 7
⊢ (∃c⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) “ 1c))
↔ ∃c(c ∈ n ∧ ∃b ∈ m d ≈
(b × c))) |
54 | | df-rex 2621 |
. . . . . . 7
⊢ (∃c ∈ n ∃b ∈ m d ≈ (b
× c) ↔ ∃c(c ∈ n ∧ ∃b ∈ m d ≈ (b
× c))) |
55 | 53, 54 | bitr4i 243 |
. . . . . 6
⊢ (∃c⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) “ 1c))
↔ ∃c ∈ n ∃b ∈ m d ≈
(b × c)) |
56 | | elima1c 4948 |
. . . . . 6
⊢ (⟨{d}, ⟨m, n⟩⟩ ∈ (( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c)) “ 1c) ↔ ∃c⟨{c}, ⟨{d}, ⟨m, n⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) “
1c))) |
57 | | rexcom 2773 |
. . . . . 6
⊢ (∃b ∈ m ∃c ∈ n d ≈ (b
× c) ↔ ∃c ∈ n ∃b ∈ m d ≈ (b
× c)) |
58 | 55, 56, 57 | 3bitr4i 268 |
. . . . 5
⊢ (⟨{d}, ⟨m, n⟩⟩ ∈ (( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c)) “ 1c) ↔ ∃b ∈ m ∃c ∈ n d ≈ (b
× c)) |
59 | | breq1 4643 |
. . . . . . 7
⊢ (a = d →
(a ≈ (b × c)
↔ d ≈ (b × c))) |
60 | 59 | 2rexbidv 2658 |
. . . . . 6
⊢ (a = d →
(∃b
∈ m ∃c ∈ n a ≈ (b
× c) ↔ ∃b ∈ m ∃c ∈ n d ≈ (b
× c))) |
61 | 20, 60 | elab 2986 |
. . . . 5
⊢ (d ∈ {a ∣ ∃b ∈ m ∃c ∈ n a ≈ (b
× c)} ↔ ∃b ∈ m ∃c ∈ n d ≈ (b
× c)) |
62 | 58, 61 | bitr4i 243 |
. . . 4
⊢ (⟨{d}, ⟨m, n⟩⟩ ∈ (( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c)) “ 1c) ↔ d ∈ {a ∣ ∃b ∈ m ∃c ∈ n a ≈ (b
× c)}) |
63 | 62 | releqmpt2 5810 |
. . 3
⊢ ((( NC × NC ) × V)
∖ (( Ins2 S ⊕ Ins3 (( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c)) “ 1c)) “
1c)) = (m ∈ NC , n ∈ NC ↦ {a ∣ ∃b ∈ m ∃c ∈ n a ≈ (b
× c)}) |
64 | 1, 63 | eqtr4i 2376 |
. 2
⊢
·c = ((( NC × NC ) × V) ∖ ((
Ins2 S ⊕
Ins3 (( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) “ 1c))
“ 1c)) “ 1c)) |
65 | | ncsex 6112 |
. . 3
⊢ NC ∈
V |
66 | | ssetex 4745 |
. . . . . . 7
⊢ S ∈
V |
67 | 66 | ins2ex 5798 |
. . . . . 6
⊢ Ins2 S ∈ V |
68 | 67 | ins2ex 5798 |
. . . . 5
⊢ Ins2 Ins2 S ∈
V |
69 | | crossex 5851 |
. . . . . . . . . . . . . 14
⊢ Cross ∈
V |
70 | 69 | cnvex 5103 |
. . . . . . . . . . . . 13
⊢ ◡ Cross ∈ V |
71 | 70 | ins4ex 5800 |
. . . . . . . . . . . 12
⊢ Ins4 ◡ Cross ∈
V |
72 | | enex 6032 |
. . . . . . . . . . . . . . 15
⊢ ≈ ∈ V |
73 | 72 | cnvex 5103 |
. . . . . . . . . . . . . 14
⊢ ◡ ≈ ∈
V |
74 | 73 | ins2ex 5798 |
. . . . . . . . . . . . 13
⊢ Ins2 ◡ ≈
∈ V |
75 | 74 | ins2ex 5798 |
. . . . . . . . . . . 12
⊢ Ins2 Ins2 ◡ ≈ ∈
V |
76 | 71, 75 | inex 4106 |
. . . . . . . . . . 11
⊢ ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈ )
∈ V |
77 | 76 | rnex 5108 |
. . . . . . . . . 10
⊢ ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈ )
∈ V |
78 | 77 | si3ex 5807 |
. . . . . . . . 9
⊢ SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈ )
∈ V |
79 | 78 | ins4ex 5800 |
. . . . . . . 8
⊢ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ ) ∈ V |
80 | 68, 79 | inex 4106 |
. . . . . . 7
⊢ ( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) ∈ V |
81 | | 1cex 4143 |
. . . . . . 7
⊢
1c ∈
V |
82 | 80, 81 | imaex 4748 |
. . . . . 6
⊢ (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c) ∈
V |
83 | 82 | ins4ex 5800 |
. . . . 5
⊢ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3
ran ( Ins4 ◡ Cross ∩
Ins2 Ins2 ◡ ≈ )) “ 1c)
∈ V |
84 | 68, 83 | inex 4106 |
. . . 4
⊢ ( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c)) ∈
V |
85 | 84, 81 | imaex 4748 |
. . 3
⊢ (( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c)) “ 1c) ∈ V |
86 | 65, 65, 85 | mpt2exlem 5812 |
. 2
⊢ ((( NC × NC ) × V)
∖ (( Ins2 S ⊕ Ins3 (( Ins2 Ins2 S ∩ Ins4 (( Ins2 Ins2 S ∩ Ins4 SI3 ran ( Ins4 ◡ Cross ∩ Ins2 Ins2 ◡ ≈
)) “ 1c)) “ 1c)) “
1c)) ∈ V |
87 | 64, 86 | eqeltri 2423 |
1
⊢
·c ∈
V |