NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mucex GIF version

Theorem mucex 6134
Description: Cardinal multiplication is a set. (Contributed by SF, 24-Feb-2015.)
Assertion
Ref Expression
mucex ·c V

Proof of Theorem mucex
Dummy variables a b c d m n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-muc 6103 . . 3 ·c = (m NC , n NC {a b m c n a ≈ (b × c)})
2 elin 3220 . . . . . . . . 9 ({c}, {d}, m, n ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) ↔ ({c}, {d}, m, n Ins2 Ins2 S {c}, {d}, m, n Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)))
3 snex 4112 . . . . . . . . . . . 12 {d} V
43otelins2 5792 . . . . . . . . . . 11 ({c}, {d}, m, n Ins2 Ins2 S {c}, m, n Ins2 S )
5 vex 2863 . . . . . . . . . . . 12 m V
65otelins2 5792 . . . . . . . . . . 11 ({c}, m, n Ins2 S {c}, n S )
7 vex 2863 . . . . . . . . . . . 12 c V
8 vex 2863 . . . . . . . . . . . 12 n V
97, 8opelssetsn 4761 . . . . . . . . . . 11 ({c}, n S c n)
104, 6, 93bitri 262 . . . . . . . . . 10 ({c}, {d}, m, n Ins2 Ins2 S c n)
118oqelins4 5795 . . . . . . . . . . 11 ({c}, {d}, m, n Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c) ↔ {c}, {d}, m (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c))
12 elin 3220 . . . . . . . . . . . . . 14 ({b}, {c}, {d}, m ( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) ↔ ({b}, {c}, {d}, m Ins2 Ins2 S {b}, {c}, {d}, m Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )))
13 snex 4112 . . . . . . . . . . . . . . . . 17 {c} V
1413otelins2 5792 . . . . . . . . . . . . . . . 16 ({b}, {c}, {d}, m Ins2 Ins2 S {b}, {d}, m Ins2 S )
153otelins2 5792 . . . . . . . . . . . . . . . 16 ({b}, {d}, m Ins2 S {b}, m S )
16 vex 2863 . . . . . . . . . . . . . . . . 17 b V
1716, 5opelssetsn 4761 . . . . . . . . . . . . . . . 16 ({b}, m S b m)
1814, 15, 173bitri 262 . . . . . . . . . . . . . . 15 ({b}, {c}, {d}, m Ins2 Ins2 S b m)
195oqelins4 5795 . . . . . . . . . . . . . . . 16 ({b}, {c}, {d}, m Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ ) ↔ {b}, {c}, {d} SI3 ran ( Ins4 CrossIns2 Ins2 ≈ ))
20 vex 2863 . . . . . . . . . . . . . . . . 17 d V
2116, 7, 20otsnelsi3 5806 . . . . . . . . . . . . . . . 16 ({b}, {c}, {d} SI3 ran ( Ins4 CrossIns2 Ins2 ≈ ) ↔ b, c, d ran ( Ins4 CrossIns2 Ins2 ≈ ))
22 elrn2 4898 . . . . . . . . . . . . . . . . 17 (b, c, d ran ( Ins4 CrossIns2 Ins2 ≈ ) ↔ aa, b, c, d ( Ins4 CrossIns2 Ins2 ≈ ))
23 elin 3220 . . . . . . . . . . . . . . . . . . 19 (a, b, c, d ( Ins4 CrossIns2 Ins2 ≈ ) ↔ (a, b, c, d Ins4 Cross a, b, c, d Ins2 Ins2 ≈ ))
2420oqelins4 5795 . . . . . . . . . . . . . . . . . . . . 21 (a, b, c, d Ins4 Crossa, b, c Cross )
25 df-br 4641 . . . . . . . . . . . . . . . . . . . . 21 (a Cross b, ca, b, c Cross )
26 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . 22 (a Cross b, cb, c Cross a)
2716, 7brcross 5850 . . . . . . . . . . . . . . . . . . . . . 22 (b, c Cross aa = (b × c))
2826, 27bitri 240 . . . . . . . . . . . . . . . . . . . . 21 (a Cross b, ca = (b × c))
2924, 25, 283bitr2i 264 . . . . . . . . . . . . . . . . . . . 20 (a, b, c, d Ins4 Crossa = (b × c))
3016otelins2 5792 . . . . . . . . . . . . . . . . . . . . 21 (a, b, c, d Ins2 Ins2 ≈ ↔ a, c, d Ins2 ≈ )
317otelins2 5792 . . . . . . . . . . . . . . . . . . . . . 22 (a, c, d Ins2 ≈ ↔ a, d ≈ )
32 df-br 4641 . . . . . . . . . . . . . . . . . . . . . 22 (ada, d ≈ )
33 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . 22 (adda)
3431, 32, 333bitr2i 264 . . . . . . . . . . . . . . . . . . . . 21 (a, c, d Ins2 ≈ ↔ da)
3530, 34bitri 240 . . . . . . . . . . . . . . . . . . . 20 (a, b, c, d Ins2 Ins2 ≈ ↔ da)
3629, 35anbi12i 678 . . . . . . . . . . . . . . . . . . 19 ((a, b, c, d Ins4 Cross a, b, c, d Ins2 Ins2 ≈ ) ↔ (a = (b × c) da))
3723, 36bitri 240 . . . . . . . . . . . . . . . . . 18 (a, b, c, d ( Ins4 CrossIns2 Ins2 ≈ ) ↔ (a = (b × c) da))
3837exbii 1582 . . . . . . . . . . . . . . . . 17 (aa, b, c, d ( Ins4 CrossIns2 Ins2 ≈ ) ↔ a(a = (b × c) da))
3916, 7xpex 5116 . . . . . . . . . . . . . . . . . 18 (b × c) V
40 breq2 4644 . . . . . . . . . . . . . . . . . 18 (a = (b × c) → (dad ≈ (b × c)))
4139, 40ceqsexv 2895 . . . . . . . . . . . . . . . . 17 (a(a = (b × c) da) ↔ d ≈ (b × c))
4222, 38, 413bitri 262 . . . . . . . . . . . . . . . 16 (b, c, d ran ( Ins4 CrossIns2 Ins2 ≈ ) ↔ d ≈ (b × c))
4319, 21, 423bitri 262 . . . . . . . . . . . . . . 15 ({b}, {c}, {d}, m Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ ) ↔ d ≈ (b × c))
4418, 43anbi12i 678 . . . . . . . . . . . . . 14 (({b}, {c}, {d}, m Ins2 Ins2 S {b}, {c}, {d}, m Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) ↔ (b m d ≈ (b × c)))
4512, 44bitri 240 . . . . . . . . . . . . 13 ({b}, {c}, {d}, m ( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) ↔ (b m d ≈ (b × c)))
4645exbii 1582 . . . . . . . . . . . 12 (b{b}, {c}, {d}, m ( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) ↔ b(b m d ≈ (b × c)))
47 elima1c 4948 . . . . . . . . . . . 12 ({c}, {d}, m (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c) ↔ b{b}, {c}, {d}, m ( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )))
48 df-rex 2621 . . . . . . . . . . . 12 (b m d ≈ (b × c) ↔ b(b m d ≈ (b × c)))
4946, 47, 483bitr4i 268 . . . . . . . . . . 11 ({c}, {d}, m (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c) ↔ b m d ≈ (b × c))
5011, 49bitri 240 . . . . . . . . . 10 ({c}, {d}, m, n Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c) ↔ b m d ≈ (b × c))
5110, 50anbi12i 678 . . . . . . . . 9 (({c}, {d}, m, n Ins2 Ins2 S {c}, {d}, m, n Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) ↔ (c n b m d ≈ (b × c)))
522, 51bitri 240 . . . . . . . 8 ({c}, {d}, m, n ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) ↔ (c n b m d ≈ (b × c)))
5352exbii 1582 . . . . . . 7 (c{c}, {d}, m, n ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) ↔ c(c n b m d ≈ (b × c)))
54 df-rex 2621 . . . . . . 7 (c n b m d ≈ (b × c) ↔ c(c n b m d ≈ (b × c)))
5553, 54bitr4i 243 . . . . . 6 (c{c}, {d}, m, n ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) ↔ c n b m d ≈ (b × c))
56 elima1c 4948 . . . . . 6 ({d}, m, n (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) “ 1c) ↔ c{c}, {d}, m, n ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)))
57 rexcom 2773 . . . . . 6 (b m c n d ≈ (b × c) ↔ c n b m d ≈ (b × c))
5855, 56, 573bitr4i 268 . . . . 5 ({d}, m, n (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) “ 1c) ↔ b m c n d ≈ (b × c))
59 breq1 4643 . . . . . . 7 (a = d → (a ≈ (b × c) ↔ d ≈ (b × c)))
60592rexbidv 2658 . . . . . 6 (a = d → (b m c n a ≈ (b × c) ↔ b m c n d ≈ (b × c)))
6120, 60elab 2986 . . . . 5 (d {a b m c n a ≈ (b × c)} ↔ b m c n d ≈ (b × c))
6258, 61bitr4i 243 . . . 4 ({d}, m, n (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) “ 1c) ↔ d {a b m c n a ≈ (b × c)})
6362releqmpt2 5810 . . 3 ((( NC × NC ) × V) (( Ins2 S Ins3 (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) “ 1c)) “ 1c)) = (m NC , n NC {a b m c n a ≈ (b × c)})
641, 63eqtr4i 2376 . 2 ·c = ((( NC × NC ) × V) (( Ins2 S Ins3 (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) “ 1c)) “ 1c))
65 ncsex 6112 . . 3 NC V
66 ssetex 4745 . . . . . . 7 S V
6766ins2ex 5798 . . . . . 6 Ins2 S V
6867ins2ex 5798 . . . . 5 Ins2 Ins2 S V
69 crossex 5851 . . . . . . . . . . . . . 14 Cross V
7069cnvex 5103 . . . . . . . . . . . . 13 Cross V
7170ins4ex 5800 . . . . . . . . . . . 12 Ins4 Cross V
72 enex 6032 . . . . . . . . . . . . . . 15 V
7372cnvex 5103 . . . . . . . . . . . . . 14 V
7473ins2ex 5798 . . . . . . . . . . . . 13 Ins2 V
7574ins2ex 5798 . . . . . . . . . . . 12 Ins2 Ins2 V
7671, 75inex 4106 . . . . . . . . . . 11 ( Ins4 CrossIns2 Ins2 ≈ ) V
7776rnex 5108 . . . . . . . . . 10 ran ( Ins4 CrossIns2 Ins2 ≈ ) V
7877si3ex 5807 . . . . . . . . 9 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ ) V
7978ins4ex 5800 . . . . . . . 8 Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ ) V
8068, 79inex 4106 . . . . . . 7 ( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) V
81 1cex 4143 . . . . . . 7 1c V
8280, 81imaex 4748 . . . . . 6 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c) V
8382ins4ex 5800 . . . . 5 Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c) V
8468, 83inex 4106 . . . 4 ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) V
8584, 81imaex 4748 . . 3 (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) “ 1c) V
8665, 65, 85mpt2exlem 5812 . 2 ((( NC × NC ) × V) (( Ins2 S Ins3 (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ran ( Ins4 CrossIns2 Ins2 ≈ )) “ 1c)) “ 1c)) “ 1c)) V
8764, 86eqeltri 2423 1 ·c V
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860   cdif 3207  cin 3209  csymdif 3210  {csn 3738  1cc1c 4135  cop 4562   class class class wbr 4640   S csset 4720  cima 4723   × cxp 4771  ccnv 4772  ran crn 4774   cmpt2 5654   Ins2 cins2 5750   Ins3 cins3 5752   Ins4 cins4 5756   SI3 csi3 5758   Cross ccross 5764  cen 6029   NC cncs 6089   ·c cmuc 6093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-csb 3138  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-cross 5765  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-muc 6103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator