Detailed syntax breakdown of Definition df-nnc
| Step | Hyp | Ref
| Expression |
| 1 | | cnnc 4374 |
. 2
class Nn |
| 2 | | c0c 4375 |
. . . . . 6
class 0c |
| 3 | | vb |
. . . . . . 7
setvar b |
| 4 | 3 | cv 1641 |
. . . . . 6
class b |
| 5 | 2, 4 | wcel 1710 |
. . . . 5
wff 0c ∈ b |
| 6 | | vy |
. . . . . . . . 9
setvar y |
| 7 | 6 | cv 1641 |
. . . . . . . 8
class y |
| 8 | | c1c 4135 |
. . . . . . . 8
class 1c |
| 9 | 7, 8 | cplc 4376 |
. . . . . . 7
class (y +c
1c) |
| 10 | 9, 4 | wcel 1710 |
. . . . . 6
wff (y
+c 1c) ∈
b |
| 11 | 10, 6, 4 | wral 2615 |
. . . . 5
wff ∀y ∈ b (y +c 1c) ∈ b |
| 12 | 5, 11 | wa 358 |
. . . 4
wff (0c ∈ b ∧ ∀y ∈ b (y
+c 1c) ∈
b) |
| 13 | 12, 3 | cab 2339 |
. . 3
class {b ∣
(0c ∈ b ∧ ∀y ∈ b (y +c 1c) ∈ b)} |
| 14 | 13 | cint 3927 |
. 2
class ∩{b ∣
(0c ∈ b ∧ ∀y ∈ b (y +c 1c) ∈ b)} |
| 15 | 1, 14 | wceq 1642 |
1
wff Nn =
∩{b ∣ (0c ∈ b ∧ ∀y ∈ b (y
+c 1c) ∈
b)} |