Detailed syntax breakdown of Definition df-nnc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cnnc 4374 | 
. 2
class  Nn | 
| 2 |   | c0c 4375 | 
. . . . . 6
class 0c | 
| 3 |   | vb | 
. . . . . . 7
setvar b | 
| 4 | 3 | cv 1641 | 
. . . . . 6
class b | 
| 5 | 2, 4 | wcel 1710 | 
. . . . 5
wff 0c ∈ b | 
| 6 |   | vy | 
. . . . . . . . 9
setvar y | 
| 7 | 6 | cv 1641 | 
. . . . . . . 8
class y | 
| 8 |   | c1c 4135 | 
. . . . . . . 8
class 1c | 
| 9 | 7, 8 | cplc 4376 | 
. . . . . . 7
class (y +c
1c) | 
| 10 | 9, 4 | wcel 1710 | 
. . . . . 6
wff (y
+c 1c) ∈
b | 
| 11 | 10, 6, 4 | wral 2615 | 
. . . . 5
wff ∀y ∈ b (y +c 1c) ∈ b | 
| 12 | 5, 11 | wa 358 | 
. . . 4
wff (0c ∈ b ∧ ∀y ∈ b (y
+c 1c) ∈
b) | 
| 13 | 12, 3 | cab 2339 | 
. . 3
class {b ∣
(0c ∈ b ∧ ∀y ∈ b (y +c 1c) ∈ b)} | 
| 14 | 13 | cint 3927 | 
. 2
class ∩{b ∣
(0c ∈ b ∧ ∀y ∈ b (y +c 1c) ∈ b)} | 
| 15 | 1, 14 | wceq 1642 | 
1
wff  Nn =
∩{b ∣ (0c ∈ b ∧ ∀y ∈ b (y
+c 1c) ∈
b)} |