Detailed syntax breakdown of Definition df-addc
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class A |
2 | | cB |
. . 3
class B |
3 | 1, 2 | cplc 4376 |
. 2
class (A +c B) |
4 | | vy |
. . . . . . . . 9
setvar y |
5 | 4 | cv 1641 |
. . . . . . . 8
class y |
6 | | vz |
. . . . . . . . 9
setvar z |
7 | 6 | cv 1641 |
. . . . . . . 8
class z |
8 | 5, 7 | cin 3209 |
. . . . . . 7
class (y ∩ z) |
9 | | c0 3551 |
. . . . . . 7
class ∅ |
10 | 8, 9 | wceq 1642 |
. . . . . 6
wff (y
∩ z) = ∅ |
11 | | vx |
. . . . . . . 8
setvar x |
12 | 11 | cv 1641 |
. . . . . . 7
class x |
13 | 5, 7 | cun 3208 |
. . . . . . 7
class (y ∪ z) |
14 | 12, 13 | wceq 1642 |
. . . . . 6
wff x =
(y ∪ z) |
15 | 10, 14 | wa 358 |
. . . . 5
wff ((y
∩ z) = ∅ ∧ x = (y ∪
z)) |
16 | 15, 6, 2 | wrex 2616 |
. . . 4
wff ∃z ∈ B ((y ∩ z) =
∅ ∧
x = (y
∪ z)) |
17 | 16, 4, 1 | wrex 2616 |
. . 3
wff ∃y ∈ A ∃z ∈ B ((y ∩ z) =
∅ ∧
x = (y
∪ z)) |
18 | 17, 11 | cab 2339 |
. 2
class {x ∣ ∃y ∈ A ∃z ∈ B ((y ∩ z) =
∅ ∧
x = (y
∪ z))} |
19 | 3, 18 | wceq 1642 |
1
wff (A
+c B) = {x ∣ ∃y ∈ A ∃z ∈ B ((y ∩ z) =
∅ ∧
x = (y
∪ z))} |