Detailed syntax breakdown of Definition df-addc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cA | 
. . 3
class A | 
| 2 |   | cB | 
. . 3
class B | 
| 3 | 1, 2 | cplc 4376 | 
. 2
class (A +c B) | 
| 4 |   | vy | 
. . . . . . . . 9
setvar y | 
| 5 | 4 | cv 1641 | 
. . . . . . . 8
class y | 
| 6 |   | vz | 
. . . . . . . . 9
setvar z | 
| 7 | 6 | cv 1641 | 
. . . . . . . 8
class z | 
| 8 | 5, 7 | cin 3209 | 
. . . . . . 7
class (y ∩ z) | 
| 9 |   | c0 3551 | 
. . . . . . 7
class ∅ | 
| 10 | 8, 9 | wceq 1642 | 
. . . . . 6
wff (y
∩ z) = ∅ | 
| 11 |   | vx | 
. . . . . . . 8
setvar x | 
| 12 | 11 | cv 1641 | 
. . . . . . 7
class x | 
| 13 | 5, 7 | cun 3208 | 
. . . . . . 7
class (y ∪ z) | 
| 14 | 12, 13 | wceq 1642 | 
. . . . . 6
wff x =
(y ∪ z) | 
| 15 | 10, 14 | wa 358 | 
. . . . 5
wff ((y
∩ z) = ∅ ∧ x = (y ∪
z)) | 
| 16 | 15, 6, 2 | wrex 2616 | 
. . . 4
wff ∃z ∈ B ((y ∩ z) =
∅ ∧
x = (y
∪ z)) | 
| 17 | 16, 4, 1 | wrex 2616 | 
. . 3
wff ∃y ∈ A ∃z ∈ B ((y ∩ z) =
∅ ∧
x = (y
∪ z)) | 
| 18 | 17, 11 | cab 2339 | 
. 2
class {x ∣ ∃y ∈ A ∃z ∈ B ((y ∩ z) =
∅ ∧
x = (y
∪ z))} | 
| 19 | 3, 18 | wceq 1642 | 
1
wff (A
+c B) = {x ∣ ∃y ∈ A ∃z ∈ B ((y ∩ z) =
∅ ∧
x = (y
∪ z))} |