NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfnnc3 GIF version

Theorem dfnnc3 5886
Description: The finite cardinals as expressed via the closure operation. Theorem X.1.3 of [Rosser] p. 276. (Contributed by SF, 12-Feb-2015.)
Assertion
Ref Expression
dfnnc3 Nn = Clos1 ({0c}, (x V (x +c 1c)))

Proof of Theorem dfnnc3
Dummy variables a y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cex 4393 . . . . . 6 0c V
21snss 3839 . . . . 5 (0c a ↔ {0c} a)
3 dfss2 3263 . . . . . 6 (((x V (x +c 1c)) “ a) az(z ((x V (x +c 1c)) “ a) → z a))
4 ralcom4 2878 . . . . . . 7 (y a z(((x V (x +c 1c)) ‘y) = zz a) ↔ zy a (((x V (x +c 1c)) ‘y) = zz a))
5 eqid 2353 . . . . . . . . . . . . 13 (x V (x +c 1c)) = (x V (x +c 1c))
65fnmpt 5690 . . . . . . . . . . . 12 (x V (x +c 1c) V → (x V (x +c 1c)) Fn V)
7 vex 2863 . . . . . . . . . . . . . 14 x V
8 1cex 4143 . . . . . . . . . . . . . 14 1c V
97, 8addcex 4395 . . . . . . . . . . . . 13 (x +c 1c) V
109a1i 10 . . . . . . . . . . . 12 (x V → (x +c 1c) V)
116, 10mprg 2684 . . . . . . . . . . 11 (x V (x +c 1c)) Fn V
12 ssv 3292 . . . . . . . . . . 11 a V
13 fvelimab 5371 . . . . . . . . . . 11 (((x V (x +c 1c)) Fn V a V) → (z ((x V (x +c 1c)) “ a) ↔ y a ((x V (x +c 1c)) ‘y) = z))
1411, 12, 13mp2an 653 . . . . . . . . . 10 (z ((x V (x +c 1c)) “ a) ↔ y a ((x V (x +c 1c)) ‘y) = z)
1514imbi1i 315 . . . . . . . . 9 ((z ((x V (x +c 1c)) “ a) → z a) ↔ (y a ((x V (x +c 1c)) ‘y) = zz a))
16 r19.23v 2731 . . . . . . . . 9 (y a (((x V (x +c 1c)) ‘y) = zz a) ↔ (y a ((x V (x +c 1c)) ‘y) = zz a))
1715, 16bitr4i 243 . . . . . . . 8 ((z ((x V (x +c 1c)) “ a) → z a) ↔ y a (((x V (x +c 1c)) ‘y) = zz a))
1817albii 1566 . . . . . . 7 (z(z ((x V (x +c 1c)) “ a) → z a) ↔ zy a (((x V (x +c 1c)) ‘y) = zz a))
194, 18bitr4i 243 . . . . . 6 (y a z(((x V (x +c 1c)) ‘y) = zz a) ↔ z(z ((x V (x +c 1c)) “ a) → z a))
20 vex 2863 . . . . . . . . . . . . 13 y V
21 addceq1 4384 . . . . . . . . . . . . . 14 (x = y → (x +c 1c) = (y +c 1c))
2220, 8addcex 4395 . . . . . . . . . . . . . 14 (y +c 1c) V
2321, 5, 22fvmpt 5701 . . . . . . . . . . . . 13 (y V → ((x V (x +c 1c)) ‘y) = (y +c 1c))
2420, 23ax-mp 5 . . . . . . . . . . . 12 ((x V (x +c 1c)) ‘y) = (y +c 1c)
2524eqeq1i 2360 . . . . . . . . . . 11 (((x V (x +c 1c)) ‘y) = z ↔ (y +c 1c) = z)
26 eqcom 2355 . . . . . . . . . . 11 ((y +c 1c) = zz = (y +c 1c))
2725, 26bitri 240 . . . . . . . . . 10 (((x V (x +c 1c)) ‘y) = zz = (y +c 1c))
2827imbi1i 315 . . . . . . . . 9 ((((x V (x +c 1c)) ‘y) = zz a) ↔ (z = (y +c 1c) → z a))
2928albii 1566 . . . . . . . 8 (z(((x V (x +c 1c)) ‘y) = zz a) ↔ z(z = (y +c 1c) → z a))
30 eleq1 2413 . . . . . . . . 9 (z = (y +c 1c) → (z a ↔ (y +c 1c) a))
3122, 30ceqsalv 2886 . . . . . . . 8 (z(z = (y +c 1c) → z a) ↔ (y +c 1c) a)
3229, 31bitri 240 . . . . . . 7 (z(((x V (x +c 1c)) ‘y) = zz a) ↔ (y +c 1c) a)
3332ralbii 2639 . . . . . 6 (y a z(((x V (x +c 1c)) ‘y) = zz a) ↔ y a (y +c 1c) a)
343, 19, 333bitr2ri 265 . . . . 5 (y a (y +c 1c) a ↔ ((x V (x +c 1c)) “ a) a)
352, 34anbi12i 678 . . . 4 ((0c a y a (y +c 1c) a) ↔ ({0c} a ((x V (x +c 1c)) “ a) a))
3635abbii 2466 . . 3 {a (0c a y a (y +c 1c) a)} = {a ({0c} a ((x V (x +c 1c)) “ a) a)}
3736inteqi 3931 . 2 {a (0c a y a (y +c 1c) a)} = {a ({0c} a ((x V (x +c 1c)) “ a) a)}
38 df-nnc 4380 . 2 Nn = {a (0c a y a (y +c 1c) a)}
39 df-clos1 5874 . 2 Clos1 ({0c}, (x V (x +c 1c))) = {a ({0c} a ((x V (x +c 1c)) “ a) a)}
4037, 38, 393eqtr4i 2383 1 Nn = Clos1 ({0c}, (x V (x +c 1c)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540   = wceq 1642   wcel 1710  {cab 2339  wral 2615  wrex 2616  Vcvv 2860   wss 3258  {csn 3738  cint 3927  1cc1c 4135   Nn cnnc 4374  0cc0c 4375   +c cplc 4376  cima 4723   Fn wfn 4777  cfv 4782   cmpt 5652   Clos1 cclos1 5873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-fv 4796  df-mpt 5653  df-clos1 5874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator