New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > peano2 | GIF version |
Description: The finite cardinals are closed under addition of one. Theorem X.1.5 of [Rosser] p. 276. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
peano2 | ⊢ (A ∈ Nn → (A +c 1c) ∈ Nn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addceq1 4384 | . . 3 ⊢ (a = A → (a +c 1c) = (A +c 1c)) | |
2 | 1 | eleq1d 2419 | . 2 ⊢ (a = A → ((a +c 1c) ∈ Nn ↔ (A +c 1c) ∈ Nn )) |
3 | addceq1 4384 | . . . . . . . 8 ⊢ (y = a → (y +c 1c) = (a +c 1c)) | |
4 | 3 | eleq1d 2419 | . . . . . . 7 ⊢ (y = a → ((y +c 1c) ∈ x ↔ (a +c 1c) ∈ x)) |
5 | 4 | rspccv 2953 | . . . . . 6 ⊢ (∀y ∈ x (y +c 1c) ∈ x → (a ∈ x → (a +c 1c) ∈ x)) |
6 | 5 | adantl 452 | . . . . 5 ⊢ ((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → (a ∈ x → (a +c 1c) ∈ x)) |
7 | 6 | a2i 12 | . . . 4 ⊢ (((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → a ∈ x) → ((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → (a +c 1c) ∈ x)) |
8 | 7 | alimi 1559 | . . 3 ⊢ (∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → a ∈ x) → ∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → (a +c 1c) ∈ x)) |
9 | df-nnc 4380 | . . . . 5 ⊢ Nn = ∩{x ∣ (0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x)} | |
10 | 9 | eleq2i 2417 | . . . 4 ⊢ (a ∈ Nn ↔ a ∈ ∩{x ∣ (0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x)}) |
11 | vex 2863 | . . . . 5 ⊢ a ∈ V | |
12 | 11 | elintab 3938 | . . . 4 ⊢ (a ∈ ∩{x ∣ (0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x)} ↔ ∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → a ∈ x)) |
13 | 10, 12 | bitri 240 | . . 3 ⊢ (a ∈ Nn ↔ ∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → a ∈ x)) |
14 | 9 | eleq2i 2417 | . . . 4 ⊢ ((a +c 1c) ∈ Nn ↔ (a +c 1c) ∈ ∩{x ∣ (0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x)}) |
15 | 1cex 4143 | . . . . . 6 ⊢ 1c ∈ V | |
16 | 11, 15 | addcex 4395 | . . . . 5 ⊢ (a +c 1c) ∈ V |
17 | 16 | elintab 3938 | . . . 4 ⊢ ((a +c 1c) ∈ ∩{x ∣ (0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x)} ↔ ∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → (a +c 1c) ∈ x)) |
18 | 14, 17 | bitri 240 | . . 3 ⊢ ((a +c 1c) ∈ Nn ↔ ∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → (a +c 1c) ∈ x)) |
19 | 8, 13, 18 | 3imtr4i 257 | . 2 ⊢ (a ∈ Nn → (a +c 1c) ∈ Nn ) |
20 | 2, 19 | vtoclga 2921 | 1 ⊢ (A ∈ Nn → (A +c 1c) ∈ Nn ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2615 ∩cint 3927 1cc1c 4135 Nn cnnc 4374 0cc0c 4375 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 df-addc 4379 df-nnc 4380 |
This theorem is referenced by: 1cnnc 4409 peano5 4410 nnc0suc 4413 nncaddccl 4420 ltfinirr 4458 ltfintr 4460 lefinlteq 4464 ltfintri 4467 ltlefin 4469 ssfin 4471 ncfinraise 4482 ncfinlower 4484 tfinsuc 4499 oddnn 4508 sucoddeven 4512 evenodddisj 4517 oddtfin 4519 sfindbl 4531 sfintfin 4533 peano4 4558 phi11lem1 4596 2nnc 6168 nclenn 6250 nnltp1c 6263 nmembers1lem3 6271 nncdiv3 6278 nnc3n3p1 6279 nnc3n3p2 6280 nnc3p1n3p2 6281 nchoicelem1 6290 nchoicelem2 6291 nchoicelem12 6301 nchoicelem17 6306 frecxp 6315 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |