New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > peano2 | GIF version |
Description: The finite cardinals are closed under addition of one. Theorem X.1.5 of [Rosser] p. 276. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
peano2 | ⊢ (A ∈ Nn → (A +c 1c) ∈ Nn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addceq1 4383 | . . 3 ⊢ (a = A → (a +c 1c) = (A +c 1c)) | |
2 | 1 | eleq1d 2419 | . 2 ⊢ (a = A → ((a +c 1c) ∈ Nn ↔ (A +c 1c) ∈ Nn )) |
3 | addceq1 4383 | . . . . . . . 8 ⊢ (y = a → (y +c 1c) = (a +c 1c)) | |
4 | 3 | eleq1d 2419 | . . . . . . 7 ⊢ (y = a → ((y +c 1c) ∈ x ↔ (a +c 1c) ∈ x)) |
5 | 4 | rspccv 2952 | . . . . . 6 ⊢ (∀y ∈ x (y +c 1c) ∈ x → (a ∈ x → (a +c 1c) ∈ x)) |
6 | 5 | adantl 452 | . . . . 5 ⊢ ((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → (a ∈ x → (a +c 1c) ∈ x)) |
7 | 6 | a2i 12 | . . . 4 ⊢ (((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → a ∈ x) → ((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → (a +c 1c) ∈ x)) |
8 | 7 | alimi 1559 | . . 3 ⊢ (∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → a ∈ x) → ∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → (a +c 1c) ∈ x)) |
9 | df-nnc 4379 | . . . . 5 ⊢ Nn = ∩{x ∣ (0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x)} | |
10 | 9 | eleq2i 2417 | . . . 4 ⊢ (a ∈ Nn ↔ a ∈ ∩{x ∣ (0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x)}) |
11 | vex 2862 | . . . . 5 ⊢ a ∈ V | |
12 | 11 | elintab 3937 | . . . 4 ⊢ (a ∈ ∩{x ∣ (0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x)} ↔ ∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → a ∈ x)) |
13 | 10, 12 | bitri 240 | . . 3 ⊢ (a ∈ Nn ↔ ∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → a ∈ x)) |
14 | 9 | eleq2i 2417 | . . . 4 ⊢ ((a +c 1c) ∈ Nn ↔ (a +c 1c) ∈ ∩{x ∣ (0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x)}) |
15 | 1cex 4142 | . . . . . 6 ⊢ 1c ∈ V | |
16 | 11, 15 | addcex 4394 | . . . . 5 ⊢ (a +c 1c) ∈ V |
17 | 16 | elintab 3937 | . . . 4 ⊢ ((a +c 1c) ∈ ∩{x ∣ (0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x)} ↔ ∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → (a +c 1c) ∈ x)) |
18 | 14, 17 | bitri 240 | . . 3 ⊢ ((a +c 1c) ∈ Nn ↔ ∀x((0c ∈ x ∧ ∀y ∈ x (y +c 1c) ∈ x) → (a +c 1c) ∈ x)) |
19 | 8, 13, 18 | 3imtr4i 257 | . 2 ⊢ (a ∈ Nn → (a +c 1c) ∈ Nn ) |
20 | 2, 19 | vtoclga 2920 | 1 ⊢ (A ∈ Nn → (A +c 1c) ∈ Nn ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2614 ∩cint 3926 1cc1c 4134 Nn cnnc 4373 0cc0c 4374 +c cplc 4375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-p6 4191 df-sik 4192 df-ssetk 4193 df-addc 4378 df-nnc 4379 |
This theorem is referenced by: 1cnnc 4408 peano5 4409 nnc0suc 4412 nncaddccl 4419 ltfinirr 4457 ltfintr 4459 lefinlteq 4463 ltfintri 4466 ltlefin 4468 ssfin 4470 ncfinraise 4481 ncfinlower 4483 tfinsuc 4498 oddnn 4507 sucoddeven 4511 evenodddisj 4516 oddtfin 4518 sfindbl 4530 sfintfin 4532 peano4 4557 phi11lem1 4595 2nnc 6167 nclenn 6249 nnltp1c 6262 nmembers1lem3 6270 nncdiv3 6277 nnc3n3p1 6278 nnc3n3p2 6279 nnc3p1n3p2 6280 nchoicelem1 6289 nchoicelem2 6290 nchoicelem12 6300 nchoicelem17 6305 frecxp 6314 frecsuc 6322 |
Copyright terms: Public domain | W3C validator |