| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > df-proj2 | GIF version | ||
| Description: Define the second projection operation. This operation recovers the second element of an ordered pair. Definition from [Rosser] p. 281. (Contributed by SF, 3-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| df-proj2 | ⊢ Proj2 A = {x ∣ ( Phi x ∪ {0c}) ∈ A} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class A | |
| 2 | 1 | cproj2 4565 | . 2 class Proj2 A | 
| 3 | vx | . . . . . . 7 setvar x | |
| 4 | 3 | cv 1641 | . . . . . 6 class x | 
| 5 | 4 | cphi 4563 | . . . . 5 class Phi x | 
| 6 | c0c 4375 | . . . . . 6 class 0c | |
| 7 | 6 | csn 3738 | . . . . 5 class {0c} | 
| 8 | 5, 7 | cun 3208 | . . . 4 class ( Phi x ∪ {0c}) | 
| 9 | 8, 1 | wcel 1710 | . . 3 wff ( Phi x ∪ {0c}) ∈ A | 
| 10 | 9, 3 | cab 2339 | . 2 class {x ∣ ( Phi x ∪ {0c}) ∈ A} | 
| 11 | 2, 10 | wceq 1642 | 1 wff Proj2 A = {x ∣ ( Phi x ∪ {0c}) ∈ A} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: dfproj22 4578 proj2op 4602 opeq 4620 | 
| Copyright terms: Public domain | W3C validator |