New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-proj2 | GIF version |
Description: Define the second projection operation. This operation recovers the second element of an ordered pair. Definition from [Rosser] p. 281. (Contributed by SF, 3-Feb-2015.) |
Ref | Expression |
---|---|
df-proj2 | ⊢ Proj2 A = {x ∣ ( Phi x ∪ {0c}) ∈ A} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | 1 | cproj2 4565 | . 2 class Proj2 A |
3 | vx | . . . . . . 7 setvar x | |
4 | 3 | cv 1641 | . . . . . 6 class x |
5 | 4 | cphi 4563 | . . . . 5 class Phi x |
6 | c0c 4375 | . . . . . 6 class 0c | |
7 | 6 | csn 3738 | . . . . 5 class {0c} |
8 | 5, 7 | cun 3208 | . . . 4 class ( Phi x ∪ {0c}) |
9 | 8, 1 | wcel 1710 | . . 3 wff ( Phi x ∪ {0c}) ∈ A |
10 | 9, 3 | cab 2339 | . 2 class {x ∣ ( Phi x ∪ {0c}) ∈ A} |
11 | 2, 10 | wceq 1642 | 1 wff Proj2 A = {x ∣ ( Phi x ∪ {0c}) ∈ A} |
Colors of variables: wff setvar class |
This definition is referenced by: dfproj22 4578 proj2op 4602 opeq 4620 |
Copyright terms: Public domain | W3C validator |