Step | Hyp | Ref
| Expression |
1 | | iftrue 3669 |
. . . . . . . . 9
⊢ (y ∈ Nn → if(y ∈ Nn , (y +c 1c),
y) = (y
+c 1c)) |
2 | 1 | eqeq2d 2364 |
. . . . . . . 8
⊢ (y ∈ Nn → (x =
if(y ∈
Nn , (y
+c 1c), y) ↔ x =
(y +c
1c))) |
3 | | iba 489 |
. . . . . . . 8
⊢ (y ∈ Nn → (x =
(y +c
1c) ↔ (x = (y +c 1c) ∧ y ∈ Nn
))) |
4 | | simpr 447 |
. . . . . . . . . . 11
⊢ ((x = y ∧ ¬ y ∈ Nn ) → ¬
y ∈ Nn ) |
5 | 4 | con2i 112 |
. . . . . . . . . 10
⊢ (y ∈ Nn → ¬ (x =
y ∧ ¬
y ∈ Nn )) |
6 | | biorf 394 |
. . . . . . . . . 10
⊢ (¬ (x = y ∧ ¬ y ∈ Nn ) →
((x = (y +c 1c) ∧ y ∈ Nn ) ↔
((x = y
∧ ¬ y
∈ Nn ) ∨ (x = (y +c 1c) ∧ y ∈ Nn
)))) |
7 | 5, 6 | syl 15 |
. . . . . . . . 9
⊢ (y ∈ Nn → ((x =
(y +c
1c) ∧ y ∈ Nn ) ↔ ((x =
y ∧ ¬
y ∈ Nn ) ∨ (x = (y
+c 1c) ∧
y ∈ Nn )))) |
8 | | orcom 376 |
. . . . . . . . 9
⊢ (((x = y ∧ ¬ y ∈ Nn ) ∨ (x = (y +c 1c) ∧ y ∈ Nn )) ↔
((x = (y +c 1c) ∧ y ∈ Nn ) ∨ (x = y ∧ ¬ y ∈ Nn ))) |
9 | 7, 8 | syl6bb 252 |
. . . . . . . 8
⊢ (y ∈ Nn → ((x =
(y +c
1c) ∧ y ∈ Nn ) ↔ ((x =
(y +c
1c) ∧ y ∈ Nn ) ∨ (x = y ∧ ¬ y ∈ Nn
)))) |
10 | 2, 3, 9 | 3bitrd 270 |
. . . . . . 7
⊢ (y ∈ Nn → (x =
if(y ∈
Nn , (y
+c 1c), y) ↔ ((x =
(y +c
1c) ∧ y ∈ Nn ) ∨ (x = y ∧ ¬ y ∈ Nn
)))) |
11 | | iffalse 3670 |
. . . . . . . . 9
⊢ (¬ y ∈ Nn → if(y ∈ Nn , (y +c 1c),
y) = y) |
12 | 11 | eqeq2d 2364 |
. . . . . . . 8
⊢ (¬ y ∈ Nn → (x =
if(y ∈
Nn , (y
+c 1c), y) ↔ x =
y)) |
13 | | iba 489 |
. . . . . . . 8
⊢ (¬ y ∈ Nn → (x =
y ↔ (x = y ∧ ¬ y ∈ Nn
))) |
14 | | simpr 447 |
. . . . . . . . . 10
⊢ ((x = (y
+c 1c) ∧
y ∈ Nn ) → y ∈ Nn
) |
15 | 14 | con3i 127 |
. . . . . . . . 9
⊢ (¬ y ∈ Nn → ¬ (x =
(y +c
1c) ∧ y ∈ Nn )) |
16 | | biorf 394 |
. . . . . . . . 9
⊢ (¬ (x = (y
+c 1c) ∧
y ∈ Nn ) → ((x =
y ∧ ¬
y ∈ Nn ) ↔ ((x =
(y +c
1c) ∧ y ∈ Nn ) ∨ (x = y ∧ ¬ y ∈ Nn
)))) |
17 | 15, 16 | syl 15 |
. . . . . . . 8
⊢ (¬ y ∈ Nn → ((x =
y ∧ ¬
y ∈ Nn ) ↔ ((x =
(y +c
1c) ∧ y ∈ Nn ) ∨ (x = y ∧ ¬ y ∈ Nn
)))) |
18 | 12, 13, 17 | 3bitrd 270 |
. . . . . . 7
⊢ (¬ y ∈ Nn → (x =
if(y ∈
Nn , (y
+c 1c), y) ↔ ((x =
(y +c
1c) ∧ y ∈ Nn ) ∨ (x = y ∧ ¬ y ∈ Nn
)))) |
19 | 10, 18 | pm2.61i 156 |
. . . . . 6
⊢ (x = if(y ∈ Nn , (y +c 1c),
y) ↔ ((x = (y
+c 1c) ∧
y ∈ Nn ) ∨ (x = y ∧ ¬ y ∈ Nn
))) |
20 | | equcom 1680 |
. . . . . . . 8
⊢ (y = x ↔
x = y) |
21 | | vex 2863 |
. . . . . . . . 9
⊢ y ∈
V |
22 | 21 | elcompl 3226 |
. . . . . . . 8
⊢ (y ∈ ∼ Nn ↔ ¬ y
∈ Nn
) |
23 | 20, 22 | anbi12i 678 |
. . . . . . 7
⊢ ((y = x ∧ y ∈ ∼ Nn ) ↔
(x = y
∧ ¬ y
∈ Nn
)) |
24 | 23 | orbi2i 505 |
. . . . . 6
⊢ (((x = (y
+c 1c) ∧
y ∈ Nn ) ∨ (y = x ∧ y ∈ ∼ Nn )) ↔
((x = (y +c 1c) ∧ y ∈ Nn ) ∨ (x = y ∧ ¬ y ∈ Nn ))) |
25 | 19, 24 | bitr4i 243 |
. . . . 5
⊢ (x = if(y ∈ Nn , (y +c 1c),
y) ↔ ((x = (y
+c 1c) ∧
y ∈ Nn ) ∨ (y = x ∧ y ∈ ∼ Nn
))) |
26 | | elun 3221 |
. . . . . 6
⊢ (⟪y, x⟫
∈ ((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) ↔ (⟪y, x⟫
∈ (Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V))
∨ ⟪y, x⟫ ∈ (
Ik ∩ ( ∼ Nn
×k V)))) |
27 | | elin 3220 |
. . . . . . . 8
⊢ (⟪y, x⟫
∈ (Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ↔
(⟪y, x⟫ ∈
Imagek(( Ins3k
∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∧ ⟪y,
x⟫ ∈ ( Nn
×k V))) |
28 | | vex 2863 |
. . . . . . . . . . 11
⊢ x ∈
V |
29 | 21, 28 | opkelimagek 4273 |
. . . . . . . . . 10
⊢ (⟪y, x⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ↔
x = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k y)) |
30 | | dfaddc2 4382 |
. . . . . . . . . . 11
⊢ (y +c 1c) = (((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k y) |
31 | 30 | eqeq2i 2363 |
. . . . . . . . . 10
⊢ (x = (y
+c 1c) ↔ x = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k y)) |
32 | 29, 31 | bitr4i 243 |
. . . . . . . . 9
⊢ (⟪y, x⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ↔
x = (y
+c 1c)) |
33 | 21, 28 | opkelxpk 4249 |
. . . . . . . . . 10
⊢ (⟪y, x⟫
∈ ( Nn
×k V) ↔ (y
∈ Nn ∧ x ∈ V)) |
34 | 28, 33 | mpbiran2 885 |
. . . . . . . . 9
⊢ (⟪y, x⟫
∈ ( Nn
×k V) ↔ y
∈ Nn
) |
35 | 32, 34 | anbi12i 678 |
. . . . . . . 8
⊢ ((⟪y, x⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∧ ⟪y,
x⟫ ∈ ( Nn
×k V)) ↔ (x =
(y +c
1c) ∧ y ∈ Nn )) |
36 | 27, 35 | bitri 240 |
. . . . . . 7
⊢ (⟪y, x⟫
∈ (Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ↔ (x = (y
+c 1c) ∧
y ∈ Nn )) |
37 | | elin 3220 |
. . . . . . . 8
⊢ (⟪y, x⟫
∈ ( Ik ∩ ( ∼ Nn ×k V)) ↔
(⟪y, x⟫ ∈
Ik ∧ ⟪y, x⟫
∈ ( ∼ Nn
×k V))) |
38 | | opkelidkg 4275 |
. . . . . . . . . 10
⊢ ((y ∈ V ∧ x ∈ V) → (⟪y, x⟫
∈ Ik ↔ y = x)) |
39 | 21, 28, 38 | mp2an 653 |
. . . . . . . . 9
⊢ (⟪y, x⟫
∈ Ik ↔ y = x) |
40 | 21, 28 | opkelxpk 4249 |
. . . . . . . . . 10
⊢ (⟪y, x⟫
∈ ( ∼ Nn
×k V) ↔ (y
∈ ∼ Nn ∧ x ∈ V)) |
41 | 28, 40 | mpbiran2 885 |
. . . . . . . . 9
⊢ (⟪y, x⟫
∈ ( ∼ Nn
×k V) ↔ y
∈ ∼ Nn
) |
42 | 39, 41 | anbi12i 678 |
. . . . . . . 8
⊢ ((⟪y, x⟫
∈ Ik ∧ ⟪y,
x⟫ ∈ ( ∼ Nn
×k V)) ↔ (y =
x ∧
y ∈ ∼
Nn )) |
43 | 37, 42 | bitri 240 |
. . . . . . 7
⊢ (⟪y, x⟫
∈ ( Ik ∩ ( ∼ Nn ×k V)) ↔ (y = x ∧ y ∈ ∼ Nn
)) |
44 | 36, 43 | orbi12i 507 |
. . . . . 6
⊢ ((⟪y, x⟫
∈ (Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V))
∨ ⟪y, x⟫ ∈ (
Ik ∩ ( ∼ Nn
×k V))) ↔ ((x
= (y +c
1c) ∧ y ∈ Nn ) ∨ (y = x ∧ y ∈ ∼ Nn
))) |
45 | 26, 44 | bitri 240 |
. . . . 5
⊢ (⟪y, x⟫
∈ ((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) ↔ ((x
= (y +c
1c) ∧ y ∈ Nn ) ∨ (y = x ∧ y ∈ ∼ Nn
))) |
46 | 25, 45 | bitr4i 243 |
. . . 4
⊢ (x = if(y ∈ Nn , (y +c 1c),
y) ↔ ⟪y, x⟫
∈ ((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V)))) |
47 | 46 | rexbii 2640 |
. . 3
⊢ (∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y) ↔ ∃y ∈ A
⟪y, x⟫ ∈
((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V)))) |
48 | | eqeq1 2359 |
. . . . 5
⊢ (z = x →
(z = if(y ∈ Nn , (y
+c 1c), y) ↔ x =
if(y ∈
Nn , (y
+c 1c), y))) |
49 | 48 | rexbidv 2636 |
. . . 4
⊢ (z = x →
(∃y
∈ A
z = if(y ∈ Nn , (y
+c 1c), y) ↔ ∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y))) |
50 | | df-phi 4566 |
. . . 4
⊢ Phi A = {z ∣ ∃y ∈ A z = if(y ∈ Nn , (y +c 1c),
y)} |
51 | 28, 49, 50 | elab2 2989 |
. . 3
⊢ (x ∈ Phi A ↔ ∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y)) |
52 | 28 | elimak 4260 |
. . 3
⊢ (x ∈
(((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) “k A) ↔ ∃y ∈ A
⟪y, x⟫ ∈
((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V)))) |
53 | 47, 51, 52 | 3bitr4i 268 |
. 2
⊢ (x ∈ Phi A ↔
x ∈
(((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) “k A)) |
54 | 53 | eqriv 2350 |
1
⊢ Phi A =
(((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) “k A) |