Step | Hyp | Ref
| Expression |
1 | | df-op 4567 |
. . . . 5
⊢ 〈A, B〉 = ({x ∣ ∃y ∈ A x = Phi y} ∪ {x
∣ ∃y ∈ B x = ( Phi y ∪ {0c})}) |
2 | 1 | eleq2i 2417 |
. . . 4
⊢ (( Phi z ∪
{0c}) ∈ 〈A, B〉 ↔ ( Phi z ∪
{0c}) ∈ ({x ∣ ∃y ∈ A x = Phi y} ∪ {x
∣ ∃y ∈ B x = ( Phi y ∪ {0c})})) |
3 | | elun 3221 |
. . . . 5
⊢ (( Phi z ∪
{0c}) ∈ ({x ∣ ∃y ∈ A x = Phi y} ∪ {x
∣ ∃y ∈ B x = ( Phi y ∪ {0c})}) ↔ (( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ A x = Phi y} ∨ ( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪ {0c})})) |
4 | | vex 2863 |
. . . . . . . . 9
⊢ z ∈
V |
5 | 4 | phiex 4573 |
. . . . . . . 8
⊢ Phi z ∈ V |
6 | | snex 4112 |
. . . . . . . 8
⊢
{0c} ∈
V |
7 | 5, 6 | unex 4107 |
. . . . . . 7
⊢ ( Phi z ∪
{0c}) ∈ V |
8 | | eqeq1 2359 |
. . . . . . . 8
⊢ (x = ( Phi z ∪ {0c}) → (x = Phi y ↔ ( Phi z ∪ {0c}) = Phi y)) |
9 | 8 | rexbidv 2636 |
. . . . . . 7
⊢ (x = ( Phi z ∪ {0c}) → (∃y ∈ A x = Phi y ↔ ∃y ∈ A ( Phi z ∪
{0c}) = Phi y)) |
10 | 7, 9 | elab 2986 |
. . . . . 6
⊢ (( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ A x = Phi y} ↔ ∃y ∈ A ( Phi z ∪
{0c}) = Phi y) |
11 | | phi011 4600 |
. . . . . . . . 9
⊢ (z = y ↔
( Phi z ∪
{0c}) = ( Phi y ∪ {0c})) |
12 | | equcom 1680 |
. . . . . . . . 9
⊢ (z = y ↔
y = z) |
13 | 11, 12 | bitr3i 242 |
. . . . . . . 8
⊢ (( Phi z ∪
{0c}) = ( Phi y ∪ {0c}) ↔ y = z) |
14 | 13 | rexbii 2640 |
. . . . . . 7
⊢ (∃y ∈ B ( Phi z ∪
{0c}) = ( Phi y ∪ {0c}) ↔ ∃y ∈ B y = z) |
15 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (x = ( Phi z ∪ {0c}) → (x = ( Phi y ∪ {0c}) ↔ ( Phi z ∪
{0c}) = ( Phi y ∪ {0c}))) |
16 | 15 | rexbidv 2636 |
. . . . . . . 8
⊢ (x = ( Phi z ∪ {0c}) → (∃y ∈ B x = ( Phi y ∪ {0c}) ↔ ∃y ∈ B ( Phi z ∪
{0c}) = ( Phi y ∪ {0c}))) |
17 | 7, 16 | elab 2986 |
. . . . . . 7
⊢ (( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪ {0c})} ↔ ∃y ∈ B ( Phi z ∪
{0c}) = ( Phi y ∪ {0c})) |
18 | | risset 2662 |
. . . . . . 7
⊢ (z ∈ B ↔ ∃y ∈ B y = z) |
19 | 14, 17, 18 | 3bitr4i 268 |
. . . . . 6
⊢ (( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪ {0c})} ↔ z ∈ B) |
20 | 10, 19 | orbi12i 507 |
. . . . 5
⊢ ((( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ A x = Phi y} ∨ ( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪ {0c})}) ↔ (∃y ∈ A ( Phi z ∪
{0c}) = Phi y ∨ z ∈ B)) |
21 | 3, 20 | bitri 240 |
. . . 4
⊢ (( Phi z ∪
{0c}) ∈ ({x ∣ ∃y ∈ A x = Phi y} ∪ {x
∣ ∃y ∈ B x = ( Phi y ∪ {0c})}) ↔ (∃y ∈ A ( Phi z ∪
{0c}) = Phi y ∨ z ∈ B)) |
22 | 2, 21 | bitri 240 |
. . 3
⊢ (( Phi z ∪
{0c}) ∈ 〈A, B〉 ↔ (∃y ∈ A ( Phi z ∪
{0c}) = Phi y ∨ z ∈ B)) |
23 | | phieq 4571 |
. . . . . 6
⊢ (x = z →
Phi x = Phi z) |
24 | 23 | uneq1d 3418 |
. . . . 5
⊢ (x = z →
( Phi x ∪
{0c}) = ( Phi z ∪ {0c})) |
25 | 24 | eleq1d 2419 |
. . . 4
⊢ (x = z →
(( Phi x ∪
{0c}) ∈ 〈A, B〉 ↔ ( Phi z ∪
{0c}) ∈ 〈A, B〉)) |
26 | | df-proj2 4569 |
. . . 4
⊢ Proj2 〈A, B〉 = {x ∣ ( Phi x ∪ {0c}) ∈ 〈A, B〉} |
27 | 4, 25, 26 | elab2 2989 |
. . 3
⊢ (z ∈ Proj2 〈A, B〉 ↔ ( Phi
z ∪ {0c})
∈ 〈A, B〉) |
28 | | 0cnelphi 4598 |
. . . . . . . 8
⊢ ¬
0c ∈
Phi y |
29 | | ssun2 3428 |
. . . . . . . . . 10
⊢
{0c} ⊆ ( Phi z ∪
{0c}) |
30 | | 0cex 4393 |
. . . . . . . . . . 11
⊢
0c ∈
V |
31 | 30 | snid 3761 |
. . . . . . . . . 10
⊢
0c ∈
{0c} |
32 | 29, 31 | sselii 3271 |
. . . . . . . . 9
⊢
0c ∈ ( Phi z ∪
{0c}) |
33 | | eleq2 2414 |
. . . . . . . . 9
⊢ (( Phi z ∪
{0c}) = Phi y → (0c ∈ ( Phi z ∪ {0c}) ↔
0c ∈
Phi y)) |
34 | 32, 33 | mpbii 202 |
. . . . . . . 8
⊢ (( Phi z ∪
{0c}) = Phi y → 0c ∈ Phi y) |
35 | 28, 34 | mto 167 |
. . . . . . 7
⊢ ¬ ( Phi z ∪
{0c}) = Phi y |
36 | 35 | a1i 10 |
. . . . . 6
⊢ (y ∈ A → ¬ ( Phi
z ∪ {0c}) =
Phi y) |
37 | 36 | nrex 2717 |
. . . . 5
⊢ ¬ ∃y ∈ A ( Phi z ∪
{0c}) = Phi y |
38 | 37 | biorfi 396 |
. . . 4
⊢ (z ∈ B ↔ (z
∈ B ∨ ∃y ∈ A ( Phi z ∪ {0c}) = Phi y)) |
39 | | orcom 376 |
. . . 4
⊢ ((z ∈ B ∨ ∃y ∈ A ( Phi z ∪
{0c}) = Phi y) ↔ (∃y ∈ A ( Phi z ∪
{0c}) = Phi y ∨ z ∈ B)) |
40 | 38, 39 | bitri 240 |
. . 3
⊢ (z ∈ B ↔ (∃y ∈ A ( Phi z ∪
{0c}) = Phi y ∨ z ∈ B)) |
41 | 22, 27, 40 | 3bitr4i 268 |
. 2
⊢ (z ∈ Proj2 〈A, B〉 ↔ z
∈ B) |
42 | 41 | eqriv 2350 |
1
⊢ Proj2 〈A, B〉 = B |