| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-op 4567 | 
. . . . 5
⊢ 〈A, B〉 = ({x ∣ ∃y ∈ A x =  Phi y} ∪ {x
∣ ∃y ∈ B x = ( Phi y ∪ {0c})}) | 
| 2 | 1 | eleq2i 2417 | 
. . . 4
⊢ (( Phi z ∪
{0c}) ∈ 〈A, B〉 ↔ ( Phi z ∪
{0c}) ∈ ({x ∣ ∃y ∈ A x =  Phi y} ∪ {x
∣ ∃y ∈ B x = ( Phi y ∪ {0c})})) | 
| 3 |   | elun 3221 | 
. . . . 5
⊢ (( Phi z ∪
{0c}) ∈ ({x ∣ ∃y ∈ A x =  Phi y} ∪ {x
∣ ∃y ∈ B x = ( Phi y ∪ {0c})}) ↔ (( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ A x =  Phi y}  ∨ ( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪ {0c})})) | 
| 4 |   | vex 2863 | 
. . . . . . . . 9
⊢ z ∈
V | 
| 5 | 4 | phiex 4573 | 
. . . . . . . 8
⊢  Phi z ∈ V | 
| 6 |   | snex 4112 | 
. . . . . . . 8
⊢
{0c} ∈
V | 
| 7 | 5, 6 | unex 4107 | 
. . . . . . 7
⊢ ( Phi z ∪
{0c}) ∈ V | 
| 8 |   | eqeq1 2359 | 
. . . . . . . 8
⊢ (x = ( Phi z ∪ {0c}) → (x =  Phi y ↔ ( Phi z ∪ {0c}) =  Phi y)) | 
| 9 | 8 | rexbidv 2636 | 
. . . . . . 7
⊢ (x = ( Phi z ∪ {0c}) → (∃y ∈ A x =  Phi y ↔ ∃y ∈ A ( Phi z ∪
{0c}) =  Phi y)) | 
| 10 | 7, 9 | elab 2986 | 
. . . . . 6
⊢ (( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ A x =  Phi y} ↔ ∃y ∈ A ( Phi z ∪
{0c}) =  Phi y) | 
| 11 |   | phi011 4600 | 
. . . . . . . . 9
⊢ (z = y ↔
( Phi z ∪
{0c}) = ( Phi y ∪ {0c})) | 
| 12 |   | equcom 1680 | 
. . . . . . . . 9
⊢ (z = y ↔
y = z) | 
| 13 | 11, 12 | bitr3i 242 | 
. . . . . . . 8
⊢ (( Phi z ∪
{0c}) = ( Phi y ∪ {0c}) ↔ y = z) | 
| 14 | 13 | rexbii 2640 | 
. . . . . . 7
⊢ (∃y ∈ B ( Phi z ∪
{0c}) = ( Phi y ∪ {0c}) ↔ ∃y ∈ B y = z) | 
| 15 |   | eqeq1 2359 | 
. . . . . . . . 9
⊢ (x = ( Phi z ∪ {0c}) → (x = ( Phi y ∪ {0c}) ↔ ( Phi z ∪
{0c}) = ( Phi y ∪ {0c}))) | 
| 16 | 15 | rexbidv 2636 | 
. . . . . . . 8
⊢ (x = ( Phi z ∪ {0c}) → (∃y ∈ B x = ( Phi y ∪ {0c}) ↔ ∃y ∈ B ( Phi z ∪
{0c}) = ( Phi y ∪ {0c}))) | 
| 17 | 7, 16 | elab 2986 | 
. . . . . . 7
⊢ (( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪ {0c})} ↔ ∃y ∈ B ( Phi z ∪
{0c}) = ( Phi y ∪ {0c})) | 
| 18 |   | risset 2662 | 
. . . . . . 7
⊢ (z ∈ B ↔ ∃y ∈ B y = z) | 
| 19 | 14, 17, 18 | 3bitr4i 268 | 
. . . . . 6
⊢ (( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪ {0c})} ↔ z ∈ B) | 
| 20 | 10, 19 | orbi12i 507 | 
. . . . 5
⊢ ((( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ A x =  Phi y}  ∨ ( Phi z ∪
{0c}) ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪ {0c})}) ↔ (∃y ∈ A ( Phi z ∪
{0c}) =  Phi y  ∨ z ∈ B)) | 
| 21 | 3, 20 | bitri 240 | 
. . . 4
⊢ (( Phi z ∪
{0c}) ∈ ({x ∣ ∃y ∈ A x =  Phi y} ∪ {x
∣ ∃y ∈ B x = ( Phi y ∪ {0c})}) ↔ (∃y ∈ A ( Phi z ∪
{0c}) =  Phi y  ∨ z ∈ B)) | 
| 22 | 2, 21 | bitri 240 | 
. . 3
⊢ (( Phi z ∪
{0c}) ∈ 〈A, B〉 ↔ (∃y ∈ A ( Phi z ∪
{0c}) =  Phi y  ∨ z ∈ B)) | 
| 23 |   | phieq 4571 | 
. . . . . 6
⊢ (x = z →
 Phi x =  Phi z) | 
| 24 | 23 | uneq1d 3418 | 
. . . . 5
⊢ (x = z →
( Phi x ∪
{0c}) = ( Phi z ∪ {0c})) | 
| 25 | 24 | eleq1d 2419 | 
. . . 4
⊢ (x = z →
(( Phi x ∪
{0c}) ∈ 〈A, B〉 ↔ ( Phi z ∪
{0c}) ∈ 〈A, B〉)) | 
| 26 |   | df-proj2 4569 | 
. . . 4
⊢  Proj2 〈A, B〉 = {x ∣ ( Phi x ∪ {0c}) ∈ 〈A, B〉} | 
| 27 | 4, 25, 26 | elab2 2989 | 
. . 3
⊢ (z ∈  Proj2 〈A, B〉 ↔ ( Phi
z ∪ {0c})
∈ 〈A, B〉) | 
| 28 |   | 0cnelphi 4598 | 
. . . . . . . 8
⊢  ¬
0c ∈ 
Phi y | 
| 29 |   | ssun2 3428 | 
. . . . . . . . . 10
⊢
{0c} ⊆ ( Phi z ∪
{0c}) | 
| 30 |   | 0cex 4393 | 
. . . . . . . . . . 11
⊢
0c ∈
V | 
| 31 | 30 | snid 3761 | 
. . . . . . . . . 10
⊢
0c ∈
{0c} | 
| 32 | 29, 31 | sselii 3271 | 
. . . . . . . . 9
⊢
0c ∈ ( Phi z ∪
{0c}) | 
| 33 |   | eleq2 2414 | 
. . . . . . . . 9
⊢ (( Phi z ∪
{0c}) =  Phi y → (0c ∈ ( Phi z ∪ {0c}) ↔
0c ∈ 
Phi y)) | 
| 34 | 32, 33 | mpbii 202 | 
. . . . . . . 8
⊢ (( Phi z ∪
{0c}) =  Phi y → 0c ∈  Phi y) | 
| 35 | 28, 34 | mto 167 | 
. . . . . . 7
⊢  ¬ ( Phi z ∪
{0c}) =  Phi y | 
| 36 | 35 | a1i 10 | 
. . . . . 6
⊢ (y ∈ A → ¬ ( Phi
z ∪ {0c}) =
 Phi y) | 
| 37 | 36 | nrex 2717 | 
. . . . 5
⊢  ¬ ∃y ∈ A ( Phi z ∪
{0c}) =  Phi y | 
| 38 | 37 | biorfi 396 | 
. . . 4
⊢ (z ∈ B ↔ (z
∈ B  ∨ ∃y ∈ A ( Phi z ∪ {0c}) =  Phi y)) | 
| 39 |   | orcom 376 | 
. . . 4
⊢ ((z ∈ B  ∨ ∃y ∈ A ( Phi z ∪
{0c}) =  Phi y) ↔ (∃y ∈ A ( Phi z ∪
{0c}) =  Phi y  ∨ z ∈ B)) | 
| 40 | 38, 39 | bitri 240 | 
. . 3
⊢ (z ∈ B ↔ (∃y ∈ A ( Phi z ∪
{0c}) =  Phi y  ∨ z ∈ B)) | 
| 41 | 22, 27, 40 | 3bitr4i 268 | 
. 2
⊢ (z ∈  Proj2 〈A, B〉 ↔ z
∈ B) | 
| 42 | 41 | eqriv 2350 | 
1
⊢  Proj2 〈A, B〉 = B |