Step | Hyp | Ref
| Expression |
1 | | df-op 4567 |
. 2
⊢ 〈 Proj1 A, Proj2 A〉 = ({x ∣ ∃y ∈ Proj1 Ax = Phi y} ∪
{x ∣
∃y ∈ Proj2 Ax = ( Phi y ∪
{0c})}) |
2 | | df-proj1 4568 |
. . . . . . 7
⊢ Proj1 A = {z ∣ Phi z ∈ A} |
3 | 2 | rexeqi 2813 |
. . . . . 6
⊢ (∃y ∈ Proj1 Ax = Phi y ↔ ∃y ∈ {z ∣ Phi z ∈ A}x = Phi y) |
4 | | phieq 4571 |
. . . . . . . 8
⊢ (z = y →
Phi z = Phi y) |
5 | 4 | eleq1d 2419 |
. . . . . . 7
⊢ (z = y →
( Phi z ∈ A ↔
Phi y ∈ A)) |
6 | 5 | rexab 3000 |
. . . . . 6
⊢ (∃y ∈ {z ∣ Phi z ∈ A}x = Phi y ↔ ∃y( Phi y ∈ A ∧ x = Phi y)) |
7 | | ancom 437 |
. . . . . . . . 9
⊢ (( Phi y ∈ A ∧ x = Phi y) ↔
(x = Phi
y ∧
Phi y ∈ A)) |
8 | | eleq1 2413 |
. . . . . . . . . 10
⊢ (x = Phi y → (x
∈ A
↔ Phi y
∈ A)) |
9 | 8 | pm5.32i 618 |
. . . . . . . . 9
⊢ ((x = Phi y ∧ x ∈ A) ↔ (x =
Phi y ∧ Phi y ∈ A)) |
10 | 7, 9 | bitr4i 243 |
. . . . . . . 8
⊢ (( Phi y ∈ A ∧ x = Phi y) ↔
(x = Phi
y ∧
x ∈
A)) |
11 | 10 | exbii 1582 |
. . . . . . 7
⊢ (∃y( Phi y ∈ A ∧ x = Phi y) ↔ ∃y(x = Phi y ∧ x ∈ A)) |
12 | | 19.41v 1901 |
. . . . . . 7
⊢ (∃y(x = Phi y ∧ x ∈ A) ↔ (∃y x = Phi y ∧ x ∈ A)) |
13 | | ancom 437 |
. . . . . . 7
⊢ ((∃y x = Phi y ∧ x ∈ A) ↔ (x
∈ A ∧ ∃y x = Phi y)) |
14 | 11, 12, 13 | 3bitri 262 |
. . . . . 6
⊢ (∃y( Phi y ∈ A ∧ x = Phi y) ↔
(x ∈
A ∧ ∃y x = Phi y)) |
15 | 3, 6, 14 | 3bitri 262 |
. . . . 5
⊢ (∃y ∈ Proj1 Ax = Phi y ↔
(x ∈
A ∧ ∃y x = Phi y)) |
16 | 15 | abbii 2466 |
. . . 4
⊢ {x ∣ ∃y ∈ Proj1 Ax = Phi y} = {x ∣ (x ∈ A ∧ ∃y x = Phi y)} |
17 | | df-rab 2624 |
. . . 4
⊢ {x ∈ A ∣ ∃y x = Phi y} = {x ∣ (x ∈ A ∧ ∃y x = Phi y)} |
18 | 16, 17 | eqtr4i 2376 |
. . 3
⊢ {x ∣ ∃y ∈ Proj1 Ax = Phi y} = {x ∈ A ∣ ∃y x = Phi y} |
19 | | df-proj2 4569 |
. . . . . . 7
⊢ Proj2 A = {z ∣ ( Phi z ∪
{0c}) ∈ A} |
20 | 19 | rexeqi 2813 |
. . . . . 6
⊢ (∃y ∈ Proj2 Ax = ( Phi y ∪
{0c}) ↔ ∃y ∈ {z ∣ ( Phi z ∪
{0c}) ∈ A}x = ( Phi y ∪
{0c})) |
21 | 4 | uneq1d 3418 |
. . . . . . . 8
⊢ (z = y →
( Phi z ∪
{0c}) = ( Phi y ∪ {0c})) |
22 | 21 | eleq1d 2419 |
. . . . . . 7
⊢ (z = y →
(( Phi z ∪
{0c}) ∈ A ↔ ( Phi y ∪ {0c}) ∈ A)) |
23 | 22 | rexab 3000 |
. . . . . 6
⊢ (∃y ∈ {z ∣ ( Phi z ∪ {0c}) ∈ A}x = ( Phi y ∪ {0c}) ↔ ∃y(( Phi y ∪
{0c}) ∈ A ∧ x = ( Phi y ∪ {0c}))) |
24 | | ancom 437 |
. . . . . . . . 9
⊢ ((( Phi y ∪
{0c}) ∈ A ∧ x = ( Phi y ∪ {0c})) ↔ (x = ( Phi y ∪ {0c}) ∧ ( Phi y ∪ {0c}) ∈ A)) |
25 | | eleq1 2413 |
. . . . . . . . . 10
⊢ (x = ( Phi y ∪ {0c}) → (x ∈ A ↔ ( Phi y ∪ {0c}) ∈ A)) |
26 | 25 | pm5.32i 618 |
. . . . . . . . 9
⊢ ((x = ( Phi y ∪ {0c}) ∧ x ∈ A) ↔
(x = ( Phi
y ∪ {0c})
∧ ( Phi y ∪ {0c}) ∈ A)) |
27 | 24, 26 | bitr4i 243 |
. . . . . . . 8
⊢ ((( Phi y ∪
{0c}) ∈ A ∧ x = ( Phi y ∪ {0c})) ↔ (x = ( Phi y ∪ {0c}) ∧ x ∈ A)) |
28 | 27 | exbii 1582 |
. . . . . . 7
⊢ (∃y(( Phi y ∪
{0c}) ∈ A ∧ x = ( Phi y ∪ {0c})) ↔ ∃y(x = ( Phi y ∪ {0c}) ∧ x ∈ A)) |
29 | | 19.41v 1901 |
. . . . . . 7
⊢ (∃y(x = ( Phi y ∪ {0c}) ∧ x ∈ A) ↔
(∃y
x = ( Phi
y ∪ {0c})
∧ x ∈ A)) |
30 | | ancom 437 |
. . . . . . 7
⊢ ((∃y x = ( Phi y ∪ {0c}) ∧ x ∈ A) ↔
(x ∈
A ∧ ∃y x = ( Phi y ∪ {0c}))) |
31 | 28, 29, 30 | 3bitri 262 |
. . . . . 6
⊢ (∃y(( Phi y ∪
{0c}) ∈ A ∧ x = ( Phi y ∪ {0c})) ↔ (x ∈ A ∧ ∃y x = ( Phi y ∪ {0c}))) |
32 | 20, 23, 31 | 3bitri 262 |
. . . . 5
⊢ (∃y ∈ Proj2 Ax = ( Phi y ∪
{0c}) ↔ (x ∈ A ∧ ∃y x = ( Phi y ∪
{0c}))) |
33 | 32 | abbii 2466 |
. . . 4
⊢ {x ∣ ∃y ∈ Proj2 Ax = ( Phi y ∪
{0c})} = {x ∣ (x ∈ A ∧ ∃y x = ( Phi y ∪
{0c}))} |
34 | | df-rab 2624 |
. . . 4
⊢ {x ∈ A ∣ ∃y x = ( Phi y ∪ {0c})} = {x ∣ (x ∈ A ∧ ∃y x = ( Phi y ∪ {0c}))} |
35 | 33, 34 | eqtr4i 2376 |
. . 3
⊢ {x ∣ ∃y ∈ Proj2 Ax = ( Phi y ∪
{0c})} = {x ∈ A ∣ ∃y x = ( Phi y ∪
{0c})} |
36 | 18, 35 | uneq12i 3417 |
. 2
⊢ ({x ∣ ∃y ∈ Proj1 Ax = Phi y} ∪
{x ∣
∃y ∈ Proj2 Ax = ( Phi y ∪
{0c})}) = ({x ∈ A ∣ ∃y x = Phi y} ∪
{x ∈
A ∣
∃y
x = ( Phi
y ∪
{0c})}) |
37 | | unrab 3527 |
. . 3
⊢ ({x ∈ A ∣ ∃y x = Phi y} ∪ {x
∈ A ∣ ∃y x = ( Phi y ∪
{0c})}) = {x ∈ A ∣ (∃y x = Phi y ∨ ∃y x = ( Phi y ∪
{0c}))} |
38 | | rabid2 2789 |
. . . 4
⊢ (A = {x ∈ A ∣ (∃y x = Phi y ∨ ∃y x = ( Phi y ∪
{0c}))} ↔ ∀x ∈ A (∃y x = Phi y ∨ ∃y x = ( Phi y ∪
{0c}))) |
39 | | vex 2863 |
. . . . . . 7
⊢ x ∈
V |
40 | 39 | phiall 4619 |
. . . . . 6
⊢ ∃y(x = Phi y ∨ x = ( Phi y ∪ {0c})) |
41 | | 19.43 1605 |
. . . . . 6
⊢ (∃y(x = Phi y ∨ x = ( Phi y ∪ {0c})) ↔ (∃y x = Phi y ∨ ∃y x = ( Phi y ∪ {0c}))) |
42 | 40, 41 | mpbi 199 |
. . . . 5
⊢ (∃y x = Phi y ∨ ∃y x = ( Phi y ∪ {0c})) |
43 | 42 | a1i 10 |
. . . 4
⊢ (x ∈ A → (∃y x = Phi y ∨ ∃y x = ( Phi y ∪ {0c}))) |
44 | 38, 43 | mprgbir 2685 |
. . 3
⊢ A = {x ∈ A ∣ (∃y x = Phi y ∨ ∃y x = ( Phi y ∪
{0c}))} |
45 | 37, 44 | eqtr4i 2376 |
. 2
⊢ ({x ∈ A ∣ ∃y x = Phi y} ∪ {x
∈ A ∣ ∃y x = ( Phi y ∪
{0c})}) = A |
46 | 1, 36, 45 | 3eqtrri 2378 |
1
⊢ A = 〈 Proj1 A, Proj2 A〉 |