Detailed syntax breakdown of Definition df-sik
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class A |
| 2 | 1 | csik 4182 |
. 2
class SIk A |
| 3 | | vx |
. . . . . . . 8
setvar x |
| 4 | 3 | cv 1641 |
. . . . . . 7
class x |
| 5 | | vy |
. . . . . . . . 9
setvar y |
| 6 | 5 | cv 1641 |
. . . . . . . 8
class y |
| 7 | | vz |
. . . . . . . . 9
setvar z |
| 8 | 7 | cv 1641 |
. . . . . . . 8
class z |
| 9 | 6, 8 | copk 4058 |
. . . . . . 7
class ⟪y, z⟫ |
| 10 | 4, 9 | wceq 1642 |
. . . . . 6
wff x =
⟪y, z⟫ |
| 11 | | vt |
. . . . . . . . . . . 12
setvar t |
| 12 | 11 | cv 1641 |
. . . . . . . . . . 11
class t |
| 13 | 12 | csn 3738 |
. . . . . . . . . 10
class {t} |
| 14 | 6, 13 | wceq 1642 |
. . . . . . . . 9
wff y =
{t} |
| 15 | | vu |
. . . . . . . . . . . 12
setvar u |
| 16 | 15 | cv 1641 |
. . . . . . . . . . 11
class u |
| 17 | 16 | csn 3738 |
. . . . . . . . . 10
class {u} |
| 18 | 8, 17 | wceq 1642 |
. . . . . . . . 9
wff z =
{u} |
| 19 | 12, 16 | copk 4058 |
. . . . . . . . . 10
class ⟪t, u⟫ |
| 20 | 19, 1 | wcel 1710 |
. . . . . . . . 9
wff ⟪t, u⟫
∈ A |
| 21 | 14, 18, 20 | w3a 934 |
. . . . . . . 8
wff (y
= {t} ∧
z = {u}
∧ ⟪t, u⟫
∈ A) |
| 22 | 21, 15 | wex 1541 |
. . . . . . 7
wff ∃u(y = {t} ∧ z = {u} ∧
⟪t, u⟫ ∈
A) |
| 23 | 22, 11 | wex 1541 |
. . . . . 6
wff ∃t∃u(y = {t} ∧ z = {u} ∧
⟪t, u⟫ ∈
A) |
| 24 | 10, 23 | wa 358 |
. . . . 5
wff (x
= ⟪y, z⟫ ∧ ∃t∃u(y = {t} ∧ z = {u} ∧
⟪t, u⟫ ∈
A)) |
| 25 | 24, 7 | wex 1541 |
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ ∃t∃u(y = {t} ∧ z = {u} ∧ ⟪t,
u⟫ ∈ A)) |
| 26 | 25, 5 | wex 1541 |
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ ∃t∃u(y = {t} ∧ z = {u} ∧ ⟪t,
u⟫ ∈ A)) |
| 27 | 26, 3 | cab 2339 |
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃t∃u(y = {t} ∧ z = {u} ∧ ⟪t,
u⟫ ∈ A))} |
| 28 | 2, 27 | wceq 1642 |
1
wff SIk A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃t∃u(y = {t} ∧ z = {u} ∧
⟪t, u⟫ ∈
A))} |