| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > df-p6 | GIF version | ||
| Description: Define the P6 operator. This is the set guaranteed by ax-typlower 4087. (Contributed by SF, 12-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| df-p6 | ⊢ P6 A = {x ∣ (V ×k {{x}}) ⊆ A} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class A | |
| 2 | 1 | cp6 4179 | . 2 class P6 A | 
| 3 | cvv 2860 | . . . . 5 class V | |
| 4 | vx | . . . . . . . 8 setvar x | |
| 5 | 4 | cv 1641 | . . . . . . 7 class x | 
| 6 | 5 | csn 3738 | . . . . . 6 class {x} | 
| 7 | 6 | csn 3738 | . . . . 5 class {{x}} | 
| 8 | 3, 7 | cxpk 4175 | . . . 4 class (V ×k {{x}}) | 
| 9 | 8, 1 | wss 3258 | . . 3 wff (V ×k {{x}}) ⊆ A | 
| 10 | 9, 4 | cab 2339 | . 2 class {x ∣ (V ×k {{x}}) ⊆ A} | 
| 11 | 2, 10 | wceq 1642 | 1 wff P6 A = {x ∣ (V ×k {{x}}) ⊆ A} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: p6eq 4239 elp6 4264 | 
| Copyright terms: Public domain | W3C validator |