New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-p6 | GIF version |
Description: Define the P6 operator. This is the set guaranteed by ax-typlower 4087. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
df-p6 | ⊢ P6 A = {x ∣ (V ×k {{x}}) ⊆ A} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | 1 | cp6 4179 | . 2 class P6 A |
3 | cvv 2860 | . . . . 5 class V | |
4 | vx | . . . . . . . 8 setvar x | |
5 | 4 | cv 1641 | . . . . . . 7 class x |
6 | 5 | csn 3738 | . . . . . 6 class {x} |
7 | 6 | csn 3738 | . . . . 5 class {{x}} |
8 | 3, 7 | cxpk 4175 | . . . 4 class (V ×k {{x}}) |
9 | 8, 1 | wss 3258 | . . 3 wff (V ×k {{x}}) ⊆ A |
10 | 9, 4 | cab 2339 | . 2 class {x ∣ (V ×k {{x}}) ⊆ A} |
11 | 2, 10 | wceq 1642 | 1 wff P6 A = {x ∣ (V ×k {{x}}) ⊆ A} |
Colors of variables: wff setvar class |
This definition is referenced by: p6eq 4239 elp6 4264 |
Copyright terms: Public domain | W3C validator |