Detailed syntax breakdown of Definition df-ssetk
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cssetk 4184 | 
. 2
class  Sk | 
| 2 |   | vx | 
. . . . . . . 8
setvar x | 
| 3 | 2 | cv 1641 | 
. . . . . . 7
class x | 
| 4 |   | vy | 
. . . . . . . . 9
setvar y | 
| 5 | 4 | cv 1641 | 
. . . . . . . 8
class y | 
| 6 |   | vz | 
. . . . . . . . 9
setvar z | 
| 7 | 6 | cv 1641 | 
. . . . . . . 8
class z | 
| 8 | 5, 7 | copk 4058 | 
. . . . . . 7
class ⟪y, z⟫ | 
| 9 | 3, 8 | wceq 1642 | 
. . . . . 6
wff x =
⟪y, z⟫ | 
| 10 | 5, 7 | wss 3258 | 
. . . . . 6
wff y
⊆ z | 
| 11 | 9, 10 | wa 358 | 
. . . . 5
wff (x
= ⟪y, z⟫ ∧
y ⊆
z) | 
| 12 | 11, 6 | wex 1541 | 
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ y ⊆ z) | 
| 13 | 12, 4 | wex 1541 | 
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ y ⊆ z) | 
| 14 | 13, 2 | cab 2339 | 
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ y ⊆ z)} | 
| 15 | 1, 14 | wceq 1642 | 
1
wff  Sk = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ y ⊆ z)} |