New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sikssvvk | GIF version |
Description: A Kuratowski singleton image is a Kuratowski relationship. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
sikssvvk | ⊢ SIk A ⊆ (V ×k V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sik 4193 | . 2 ⊢ SIk A = {x ∣ ∃y∃z(x = ⟪y, z⟫ ∧ ∃t∃u(y = {t} ∧ z = {u} ∧ ⟪t, u⟫ ∈ A))} | |
2 | 1 | opkabssvvki 4210 | 1 ⊢ SIk A ⊆ (V ×k V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ⊆ wss 3258 {csn 3738 ⟪copk 4058 ×k cxpk 4175 SIk csik 4182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-sik 4193 |
This theorem is referenced by: sikss1c1c 4268 |
Copyright terms: Public domain | W3C validator |