Detailed syntax breakdown of Definition df-spfin
Step | Hyp | Ref
| Expression |
1 | | cspfin 4440 |
. 2
class Spfin |
2 | | cvv 2860 |
. . . . . . 7
class V |
3 | 2 | cncfin 4435 |
. . . . . 6
class Ncfin V |
4 | | va |
. . . . . . 7
setvar a |
5 | 4 | cv 1641 |
. . . . . 6
class a |
6 | 3, 5 | wcel 1710 |
. . . . 5
wff Ncfin V ∈
a |
7 | | vz |
. . . . . . . . . 10
setvar z |
8 | 7 | cv 1641 |
. . . . . . . . 9
class z |
9 | | vx |
. . . . . . . . . 10
setvar x |
10 | 9 | cv 1641 |
. . . . . . . . 9
class x |
11 | 8, 10 | wsfin 4439 |
. . . . . . . 8
wff Sfin (z,
x) |
12 | 7, 4 | wel 1711 |
. . . . . . . 8
wff z
∈ a |
13 | 11, 12 | wi 4 |
. . . . . . 7
wff ( Sfin (z,
x) → z ∈ a) |
14 | 13, 7 | wal 1540 |
. . . . . 6
wff ∀z( Sfin (z,
x) → z ∈ a) |
15 | 14, 9, 5 | wral 2615 |
. . . . 5
wff ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a) |
16 | 6, 15 | wa 358 |
. . . 4
wff ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a)) |
17 | 16, 4 | cab 2339 |
. . 3
class {a ∣ ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} |
18 | 17 | cint 3927 |
. 2
class ∩{a ∣ ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} |
19 | 1, 18 | wceq 1642 |
1
wff Spfin = ∩{a ∣ ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} |