Detailed syntax breakdown of Definition df-spfin
| Step | Hyp | Ref
| Expression |
| 1 | | cspfin 4440 |
. 2
class Spfin |
| 2 | | cvv 2860 |
. . . . . . 7
class V |
| 3 | 2 | cncfin 4435 |
. . . . . 6
class Ncfin V |
| 4 | | va |
. . . . . . 7
setvar a |
| 5 | 4 | cv 1641 |
. . . . . 6
class a |
| 6 | 3, 5 | wcel 1710 |
. . . . 5
wff Ncfin V ∈
a |
| 7 | | vz |
. . . . . . . . . 10
setvar z |
| 8 | 7 | cv 1641 |
. . . . . . . . 9
class z |
| 9 | | vx |
. . . . . . . . . 10
setvar x |
| 10 | 9 | cv 1641 |
. . . . . . . . 9
class x |
| 11 | 8, 10 | wsfin 4439 |
. . . . . . . 8
wff Sfin (z,
x) |
| 12 | 7, 4 | wel 1711 |
. . . . . . . 8
wff z
∈ a |
| 13 | 11, 12 | wi 4 |
. . . . . . 7
wff ( Sfin (z,
x) → z ∈ a) |
| 14 | 13, 7 | wal 1540 |
. . . . . 6
wff ∀z( Sfin (z,
x) → z ∈ a) |
| 15 | 14, 9, 5 | wral 2615 |
. . . . 5
wff ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a) |
| 16 | 6, 15 | wa 358 |
. . . 4
wff ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a)) |
| 17 | 16, 4 | cab 2339 |
. . 3
class {a ∣ ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} |
| 18 | 17 | cint 3927 |
. 2
class ∩{a ∣ ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} |
| 19 | 1, 18 | wceq 1642 |
1
wff Spfin = ∩{a ∣ ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} |