Detailed syntax breakdown of Definition df-spfin
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cspfin 4440 | 
. 2
class  Spfin | 
| 2 |   | cvv 2860 | 
. . . . . . 7
class V | 
| 3 | 2 | cncfin 4435 | 
. . . . . 6
class  Ncfin V | 
| 4 |   | va | 
. . . . . . 7
setvar a | 
| 5 | 4 | cv 1641 | 
. . . . . 6
class a | 
| 6 | 3, 5 | wcel 1710 | 
. . . . 5
wff  Ncfin V ∈
a | 
| 7 |   | vz | 
. . . . . . . . . 10
setvar z | 
| 8 | 7 | cv 1641 | 
. . . . . . . . 9
class z | 
| 9 |   | vx | 
. . . . . . . . . 10
setvar x | 
| 10 | 9 | cv 1641 | 
. . . . . . . . 9
class x | 
| 11 | 8, 10 | wsfin 4439 | 
. . . . . . . 8
wff  Sfin (z,
x) | 
| 12 | 7, 4 | wel 1711 | 
. . . . . . . 8
wff z
∈ a | 
| 13 | 11, 12 | wi 4 | 
. . . . . . 7
wff ( Sfin (z,
x) → z ∈ a) | 
| 14 | 13, 7 | wal 1540 | 
. . . . . 6
wff ∀z( Sfin (z,
x) → z ∈ a) | 
| 15 | 14, 9, 5 | wral 2615 | 
. . . . 5
wff ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a) | 
| 16 | 6, 15 | wa 358 | 
. . . 4
wff ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a)) | 
| 17 | 16, 4 | cab 2339 | 
. . 3
class {a ∣ ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} | 
| 18 | 17 | cint 3927 | 
. 2
class ∩{a ∣ ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} | 
| 19 | 1, 18 | wceq 1642 | 
1
wff  Spfin = ∩{a ∣ ( Ncfin V ∈
a ∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} |