NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ncvspfin GIF version

Theorem ncvspfin 4539
Description: The cardinality of the universe is in the finite Sp set. Theorem X.1.49 of [Rosser] p. 534. (Contributed by SF, 27-Jan-2015.)
Assertion
Ref Expression
ncvspfin Ncfin V Spfin

Proof of Theorem ncvspfin
Dummy variables x a z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ncfinex 4473 . . . 4 Ncfin V V
21elintab 3938 . . 3 ( Ncfin V {a ( Ncfin V a x a z( Sfin (z, x) → z a))} ↔ a(( Ncfin V a x a z( Sfin (z, x) → z a)) → Ncfin V a))
3 simpl 443 . . 3 (( Ncfin V a x a z( Sfin (z, x) → z a)) → Ncfin V a)
42, 3mpgbir 1550 . 2 Ncfin V {a ( Ncfin V a x a z( Sfin (z, x) → z a))}
5 df-spfin 4448 . 2 Spfin = {a ( Ncfin V a x a z( Sfin (z, x) → z a))}
64, 5eleqtrri 2426 1 Ncfin V Spfin
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540   wcel 1710  {cab 2339  wral 2615  Vcvv 2860  cint 3927   Ncfin cncfin 4435   Sfin wsfin 4439   Spfin cspfin 4440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iota 4340  df-ncfin 4443  df-spfin 4448
This theorem is referenced by:  spfininduct  4541  1cspfin  4544  vfinspss  4552  vfinspeqtncv  4554
  Copyright terms: Public domain W3C validator