New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ncvspfin | GIF version |
Description: The cardinality of the universe is in the finite Sp set. Theorem X.1.49 of [Rosser] p. 534. (Contributed by SF, 27-Jan-2015.) |
Ref | Expression |
---|---|
ncvspfin | ⊢ Ncfin V ∈ Spfin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncfinex 4473 | . . . 4 ⊢ Ncfin V ∈ V | |
2 | 1 | elintab 3938 | . . 3 ⊢ ( Ncfin V ∈ ∩{a ∣ ( Ncfin V ∈ a ∧ ∀x ∈ a ∀z( Sfin (z, x) → z ∈ a))} ↔ ∀a(( Ncfin V ∈ a ∧ ∀x ∈ a ∀z( Sfin (z, x) → z ∈ a)) → Ncfin V ∈ a)) |
3 | simpl 443 | . . 3 ⊢ (( Ncfin V ∈ a ∧ ∀x ∈ a ∀z( Sfin (z, x) → z ∈ a)) → Ncfin V ∈ a) | |
4 | 2, 3 | mpgbir 1550 | . 2 ⊢ Ncfin V ∈ ∩{a ∣ ( Ncfin V ∈ a ∧ ∀x ∈ a ∀z( Sfin (z, x) → z ∈ a))} |
5 | df-spfin 4448 | . 2 ⊢ Spfin = ∩{a ∣ ( Ncfin V ∈ a ∧ ∀x ∈ a ∀z( Sfin (z, x) → z ∈ a))} | |
6 | 4, 5 | eleqtrri 2426 | 1 ⊢ Ncfin V ∈ Spfin |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 {cab 2339 ∀wral 2615 Vcvv 2860 ∩cint 3927 Ncfin cncfin 4435 Sfin wsfin 4439 Spfin cspfin 4440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iota 4340 df-ncfin 4443 df-spfin 4448 |
This theorem is referenced by: spfininduct 4541 1cspfin 4544 vfinspss 4552 vfinspeqtncv 4554 |
Copyright terms: Public domain | W3C validator |