NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-sfin GIF version

Definition df-sfin 4447
Description: Define the finite S relationship. This relationship encapsulates the idea of M being a "smaller" number than N. Definition from [Rosser] p. 530. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
df-sfin ( Sfin (M, N) ↔ (M Nn N Nn a(1a M a N)))
Distinct variable groups:   M,a   N,a

Detailed syntax breakdown of Definition df-sfin
StepHypRef Expression
1 cM . . 3 class M
2 cN . . 3 class N
31, 2wsfin 4439 . 2 wff Sfin (M, N)
4 cnnc 4374 . . . 4 class Nn
51, 4wcel 1710 . . 3 wff M Nn
62, 4wcel 1710 . . 3 wff N Nn
7 va . . . . . . . 8 setvar a
87cv 1641 . . . . . . 7 class a
98cpw1 4136 . . . . . 6 class 1a
109, 1wcel 1710 . . . . 5 wff 1a M
118cpw 3723 . . . . . 6 class a
1211, 2wcel 1710 . . . . 5 wff a N
1310, 12wa 358 . . . 4 wff (1a M a N)
1413, 7wex 1541 . . 3 wff a(1a M a N)
155, 6, 14w3a 934 . 2 wff (M Nn N Nn a(1a M a N))
163, 15wb 176 1 wff ( Sfin (M, N) ↔ (M Nn N Nn a(1a M a N)))
Colors of variables: wff setvar class
This definition is referenced by:  srelk  4525  sfineq1  4527  sfineq2  4528  sfin01  4529  sfin112  4530  sfindbl  4531  sfintfin  4533  sfinltfin  4536  sfin111  4537  spfinsfincl  4540  vfinspnn  4542  1cvsfin  4543  vfinspsslem1  4551
  Copyright terms: Public domain W3C validator