NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkelssetkg GIF version

Theorem opkelssetkg 4269
Description: Membership in the Kuratowski subset relationship. (Contributed by SF, 13-Jan-2015.)
Assertion
Ref Expression
opkelssetkg ((A V B W) → (⟪A, B SkA B))

Proof of Theorem opkelssetkg
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ssetk 4194 . 2 Sk = {x yz(x = ⟪y, z y z)}
2 sseq1 3293 . 2 (y = A → (y zA z))
3 sseq2 3294 . 2 (z = B → (A zA B))
41, 2, 3opkelopkabg 4246 1 ((A V B W) → (⟪A, B SkA B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   wcel 1710   wss 3258  copk 4058   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-ssetk 4194
This theorem is referenced by:  elssetkg  4270  ssetkex  4295  dfidk2  4314  ssfin  4471  eqpwrelk  4479  srelk  4525  dfsset2  4744
  Copyright terms: Public domain W3C validator