NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-op GIF version

Definition df-op 4567
Description: Define the type-level ordered pair. Definition from [Rosser] p. 281. (Contributed by SF, 3-Feb-2015.)
Assertion
Ref Expression
df-op A, B = ({x y A x = Phi y} ∪ {x y B x = ( Phi y ∪ {0c})})
Distinct variable groups:   x,y,A   x,B,y

Detailed syntax breakdown of Definition df-op
StepHypRef Expression
1 cA . . 3 class A
2 cB . . 3 class B
31, 2cop 4562 . 2 class A, B
4 vx . . . . . . 7 setvar x
54cv 1641 . . . . . 6 class x
6 vy . . . . . . . 8 setvar y
76cv 1641 . . . . . . 7 class y
87cphi 4563 . . . . . 6 class Phi y
95, 8wceq 1642 . . . . 5 wff x = Phi y
109, 6, 1wrex 2616 . . . 4 wff y A x = Phi y
1110, 4cab 2339 . . 3 class {x y A x = Phi y}
12 c0c 4375 . . . . . . . 8 class 0c
1312csn 3738 . . . . . . 7 class {0c}
148, 13cun 3208 . . . . . 6 class ( Phi y ∪ {0c})
155, 14wceq 1642 . . . . 5 wff x = ( Phi y ∪ {0c})
1615, 6, 2wrex 2616 . . . 4 wff y B x = ( Phi y ∪ {0c})
1716, 4cab 2339 . . 3 class {x y B x = ( Phi y ∪ {0c})}
1811, 17cun 3208 . 2 class ({x y A x = Phi y} ∪ {x y B x = ( Phi y ∪ {0c})})
193, 18wceq 1642 1 wff A, B = ({x y A x = Phi y} ∪ {x y B x = ( Phi y ∪ {0c})})
Colors of variables: wff setvar class
This definition is referenced by:  dfop2  4576  proj1op  4601  proj2op  4602  nfop  4605  eqop  4612  opeq  4620  dfswap2  4742
  Copyright terms: Public domain W3C validator