| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dfor2 | GIF version | ||
| Description: Logical 'or' expressed in terms of implication only. Theorem *5.25 of [WhiteheadRussell] p. 124. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Wolf Lammen, 20-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| dfor2 | ⊢ ((φ ∨ ψ) ↔ ((φ → ψ) → ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.62 398 | . 2 ⊢ ((φ ∨ ψ) → ((φ → ψ) → ψ)) | |
| 2 | pm2.68 399 | . 2 ⊢ (((φ → ψ) → ψ) → (φ ∨ ψ)) | |
| 3 | 1, 2 | impbii 180 | 1 ⊢ ((φ ∨ ψ) ↔ ((φ → ψ) → ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 | 
| This theorem is referenced by: imimorb 847 | 
| Copyright terms: Public domain | W3C validator |