New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imimorb | GIF version |
Description: Simplify an implication between implications. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Wolf Lammen, 3-Apr-2013.) |
Ref | Expression |
---|---|
imimorb | ⊢ (((ψ → χ) → (φ → χ)) ↔ (φ → (ψ ∨ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 350 | . 2 ⊢ (((ψ → χ) → (φ → χ)) ↔ (φ → ((ψ → χ) → χ))) | |
2 | dfor2 400 | . . 3 ⊢ ((ψ ∨ χ) ↔ ((ψ → χ) → χ)) | |
3 | 2 | imbi2i 303 | . 2 ⊢ ((φ → (ψ ∨ χ)) ↔ (φ → ((ψ → χ) → χ))) |
4 | 1, 3 | bitr4i 243 | 1 ⊢ (((ψ → χ) → (φ → χ)) ↔ (φ → (ψ ∨ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |