NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imimorb GIF version

Theorem imimorb 847
Description: Simplify an implication between implications. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Wolf Lammen, 3-Apr-2013.)
Assertion
Ref Expression
imimorb (((ψχ) → (φχ)) ↔ (φ → (ψ χ)))

Proof of Theorem imimorb
StepHypRef Expression
1 bi2.04 350 . 2 (((ψχ) → (φχ)) ↔ (φ → ((ψχ) → χ)))
2 dfor2 400 . . 3 ((ψ χ) ↔ ((ψχ) → χ))
32imbi2i 303 . 2 ((φ → (ψ χ)) ↔ (φ → ((ψχ) → χ)))
41, 3bitr4i 243 1 (((ψχ) → (φχ)) ↔ (φ → (ψ χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator