New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imor | GIF version |
Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imor | ⊢ ((φ → ψ) ↔ (¬ φ ∨ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 282 | . . 3 ⊢ (φ ↔ ¬ ¬ φ) | |
2 | 1 | imbi1i 315 | . 2 ⊢ ((φ → ψ) ↔ (¬ ¬ φ → ψ)) |
3 | df-or 359 | . 2 ⊢ ((¬ φ ∨ ψ) ↔ (¬ ¬ φ → ψ)) | |
4 | 2, 3 | bitr4i 243 | 1 ⊢ ((φ → ψ) ↔ (¬ φ ∨ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: imori 402 imorri 403 pm4.62 408 pm4.52 477 pm4.78 565 rb-bijust 1514 rb-imdf 1515 rb-ax1 1517 nf4 1868 r19.30 2756 dfimak2 4298 nncaddccl 4419 nndisjeq 4429 preaddccan2lem1 4454 ltfintrilem1 4465 evenoddnnnul 4514 leconnnc 6218 addccan2nclem2 6264 nchoicelem16 6304 |
Copyright terms: Public domain | W3C validator |