NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ecased GIF version

Theorem ecased 910
Description: Deduction for elimination by cases. (Contributed by NM, 8-Oct-2012.)
Hypotheses
Ref Expression
ecased.1 (φ → (¬ ψθ))
ecased.2 (φ → (¬ χθ))
ecased.3 (φ → ((ψ χ) → θ))
Assertion
Ref Expression
ecased (φθ)

Proof of Theorem ecased
StepHypRef Expression
1 ecased.1 . 2 (φ → (¬ ψθ))
2 ecased.2 . 2 (φ → (¬ χθ))
3 pm3.11 485 . . 3 (¬ (¬ ψ ¬ χ) → (ψ χ))
4 ecased.3 . . 3 (φ → ((ψ χ) → θ))
53, 4syl5 28 . 2 (φ → (¬ (¬ ψ ¬ χ) → θ))
61, 2, 5ecase3d 909 1 (φθ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  ecase3ad  911
  Copyright terms: Public domain W3C validator