NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ecase3ad GIF version

Theorem ecase3ad 911
Description: Deduction for elimination by cases. (Contributed by NM, 24-May-2013.)
Hypotheses
Ref Expression
ecase3ad.1 (φ → (ψθ))
ecase3ad.2 (φ → (χθ))
ecase3ad.3 (φ → ((¬ ψ ¬ χ) → θ))
Assertion
Ref Expression
ecase3ad (φθ)

Proof of Theorem ecase3ad
StepHypRef Expression
1 notnot2 104 . . 3 (¬ ¬ ψψ)
2 ecase3ad.1 . . 3 (φ → (ψθ))
31, 2syl5 28 . 2 (φ → (¬ ¬ ψθ))
4 notnot2 104 . . 3 (¬ ¬ χχ)
5 ecase3ad.2 . . 3 (φ → (χθ))
64, 5syl5 28 . 2 (φ → (¬ ¬ χθ))
7 ecase3ad.3 . 2 (φ → ((¬ ψ ¬ χ) → θ))
83, 6, 7ecased 910 1 (φθ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator