New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > inegd | GIF version |
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
inegd.1 | ⊢ ((φ ∧ ψ) → ⊥ ) |
Ref | Expression |
---|---|
inegd | ⊢ (φ → ¬ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inegd.1 | . . 3 ⊢ ((φ ∧ ψ) → ⊥ ) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → (ψ → ⊥ )) |
3 | dfnot 1332 | . 2 ⊢ (¬ ψ ↔ (ψ → ⊥ )) | |
4 | 2, 3 | sylibr 203 | 1 ⊢ (φ → ¬ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-fal 1320 |
This theorem is referenced by: efald 1334 |
Copyright terms: Public domain | W3C validator |