NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  inegd GIF version

Theorem inegd 1333
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
inegd.1 ((φ ψ) → ⊥ )
Assertion
Ref Expression
inegd (φ → ¬ ψ)

Proof of Theorem inegd
StepHypRef Expression
1 inegd.1 . . 3 ((φ ψ) → ⊥ )
21ex 423 . 2 (φ → (ψ → ⊥ ))
3 dfnot 1332 . 2 ψ ↔ (ψ → ⊥ ))
42, 3sylibr 203 1 (φ → ¬ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358  wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-fal 1320
This theorem is referenced by:  efald  1334
  Copyright terms: Public domain W3C validator