NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exp4c GIF version

Theorem exp4c 591
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp4c.1 (φ → (((ψ χ) θ) → τ))
Assertion
Ref Expression
exp4c (φ → (ψ → (χ → (θτ))))

Proof of Theorem exp4c
StepHypRef Expression
1 exp4c.1 . . 3 (φ → (((ψ χ) θ) → τ))
21exp3a 425 . 2 (φ → ((ψ χ) → (θτ)))
32exp3a 425 1 (φ → (ψ → (χ → (θτ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator