New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exp3a | GIF version |
Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
exp3a.1 | ⊢ (φ → ((ψ ∧ χ) → θ)) |
Ref | Expression |
---|---|
exp3a | ⊢ (φ → (ψ → (χ → θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . . 4 ⊢ (φ → ((ψ ∧ χ) → θ)) | |
2 | 1 | com12 27 | . . 3 ⊢ ((ψ ∧ χ) → (φ → θ)) |
3 | 2 | ex 423 | . 2 ⊢ (ψ → (χ → (φ → θ))) |
4 | 3 | com3r 73 | 1 ⊢ (φ → (ψ → (χ → θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: expdimp 426 pm3.3 431 syland 467 exp32 588 exp4c 591 exp4d 592 exp42 594 exp44 596 exp5c 599 impl 603 mpan2d 655 3impib 1149 exp5o 1170 exbir 1365 exp3acom3r 1370 exp3acom23 1372 nfsb4t 2080 ax11indn 2195 mo 2226 mopick 2266 ralrimivv 2706 mob2 3017 reuind 3040 reupick3 3541 pwadjoin 4120 opkthg 4132 nndisjeq 4430 ssfin 4471 ncfinraise 4482 sfin112 4530 sfintfin 4533 vfinspss 4552 phi11lem1 4596 funcnvuni 5162 fnun 5190 fconst5 5456 funfvima 5460 funsi 5521 fnpprod 5844 clos1conn 5880 trrd 5926 enprmaplem3 6079 nclenn 6250 ncslesuc 6268 nmembers1lem2 6270 nchoicelem17 6306 frecxp 6315 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |