NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  falbifal GIF version

Theorem falbifal 1353
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falbifal (( ⊥ ↔ ⊥ ) ↔ ⊤ )

Proof of Theorem falbifal
StepHypRef Expression
1 biid 227 . 2 ( ⊥ ↔ ⊥ )
21bitru 1326 1 (( ⊥ ↔ ⊥ ) ↔ ⊤ )
Colors of variables: wff setvar class
Syntax hints:  wb 176  wtru 1316  wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-tru 1319
This theorem is referenced by:  falxorfal  1361
  Copyright terms: Public domain W3C validator