| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > falbifal | GIF version | ||
| Description: A ↔ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| falbifal | ⊢ (( ⊥ ↔ ⊥ ) ↔ ⊤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 227 | . 2 ⊢ ( ⊥ ↔ ⊥ ) | |
| 2 | 1 | bitru 1326 | 1 ⊢ (( ⊥ ↔ ⊥ ) ↔ ⊤ ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ⊤ wtru 1316 ⊥ wfal 1317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-tru 1319 |
| This theorem is referenced by: falxorfal 1361 |
| Copyright terms: Public domain | W3C validator |